On the evidence of the contamination of argon in oxygen, and its effects at its triple point temperature arising from a 50 years-long database of measurements.

Franco Pavese, Peter P.M. Steur

1. Introduction

Since the introduction of the IPTS68, and a consequence of the (recent) fast development of the cryogenic field, especially below 50 K [Pavese, 1994; Pavese, 2006; Pavese and Steur, 2019; Steur and Pavese, 2007] the triple point temperature (TP) of substances that are gaseous at room temperature are being measured accurately, among them oxygen (TPO2). Such measurements require accurate calorimetry and a pure substance, since the TP temperature is affected by impurities. In the 70's-80's the available purity of oxygen was limited to $20-50 \cdot 10^{-6}$ amount concentrations of impurities (pioneered by [Muijlwijk, 1968; Ancsin 1970,1973, 1978; Furukawa, 1986]).

Such measurements in the '70s and early '80s resulted in two inter-comparisons. The first one was performed at NPL (1979) [Ward and Compton, 1979] comparing calibrated thermometers (SPRT), with 10 national labs, 23 thermometers + 14 from NPL, and 7 fixed points of IPTS-68. The second (IntInt) was performed in the period 1978-84 at IMGC-CNR [Pavese, 1984; Pavese, 1983; Pavese *et al.*, 1984] derived from measurements on samples in *sealed metal cells* as reported from SPRTs, with 11 national labs, 7 gases, 31 cells, and 200 meltings (on the IPTS-68 scale). Indeed, it was in the middle '70s that IMGC-CNR initiated the sealed-cell technique [Pavese, 1975; Pavese *et al.*, 1976], which then propagated to several other countries (INM, ASMW (PTB), NPL, NRC, NRLM (now NMIJ), PRMI (now VNIIFTRI)), allowing to repeat measurements for subsequent decades on the same stable samples, due to the absence of further manipulation and contamination.

Another summary of the state-of-the-art situation became available in 1999–2002 with the CCT-K2 Key Comparison (and following bi/tri-laterals until 2014), still obtained by comparing calibrated thermometers at NRC in a copper block [Steele, 2002]. With comparison CCT-K2, 9 national labs participated with 18 SPRTs + others from NRC, using 8 fixed points, on the ITS-90 scale. Comparison K2.1 was between VNIIFTRI, NRC, K2.3 between VSL-Nmi and NRC, K2.4 between INTiBS, INM and, NRC and finally K2.5 between NMIJ. INRiM and NRC.

In 1999, IMGC-CNR started the *production* of many sealed cells for several gases, including pure oxygen: 23 O_2 cells were made and tested, of which 15 were then provided to laboratories of 8 countries worldwide.

In 1997-2005 a further STAR intercomparison was made at PTB by directly measuring *sealed cells* supplied to PTB [Fellmuth *et al.*, 2005] by 10 laboratories, with 4 fixed points and 14 cells—2 cells from VNIIFTRI, 2 cells from INM and 6 cells of IMGC-CNR, of which 4 then owned by other laboratories.

In total, it is now possible to analyse together the results of **51 samples**, from 1970 to 2014 (only a few of them from open-cell measurements) with the nominal purity of the gases ranging from 4N5 to 6N. In the case of the NPL comparison, the differences between national realizations of 10 NMIs were found as registered on SPRTs.

2. Data and possible information sources for the effect of chemical impurities on the TPO2

The effects of chemical impurities on the oxygen triple point temperature have been studied since the 70's, see at least [Mujilwijk, 1968; Ancsin, 1973; Pavese, 1975]. A summary on this subject is published in [Pavese, 2009], as reported here in Table A1, and more recently in [Steur *et al.*, 2020] where is given,

for Ar: @ TP = +11.75 K mol⁻¹; @ $\beta - \gamma = -13.9$ K mol⁻¹; @ $\alpha - \beta = -133.9$ K mol⁻¹. A comprehensive summary of the effects on measurements in the last 50 years is reported in the following.

The presence of N_2 may be significant and is not supposed to be altered by normal accurate manipulation of the sample; after that it remains stable in time in each sealed cell. In addition, the presence of noble gases such as Kr, Xe may be significant, but only Kr is likely to be contained in O_2 . All these impurities have the effect to increase the melting range of the TPO2.

The most insidious impurity is the presence of Ar, because it is undetectable by thermal analysis on the TP, since Ar forms a peritectic with O_2 , so it does not alter the melting slope, but only the liquidus temperature. With normal gas chromatography, its peak coincides with that of the prevalent O_2 , so a special procedure is required for their separation.¹ However, its presence in O_2 is irrelevant for the majority of the users, therefore producers very often *omit* this test, even in recent times [Nasso *et al.*, 2009, Shimosaka, 2017]: in most cases only a "batch value" is provided, when at all. Specific studies on the unreliability of analyses regarding Ar contamination were done since 1988 [Pavese *et al.*, 1988,], showing that the error in Ar content can be quite relevant on the measured temperature of the TPO2. More recently, it was found that the Ar effect can be evaluated instead by measuring the solid-to-solid transitions was studied and more recently [Steur *et al.* 2017; Steur *et al.*, 2020; Steur *et al.*, 2020b] studied both the α - β and β - γ transitions by using calibrated Ar-in-O₂ mixtures at INRiM (formerly IMGC-CNR), supplied by KRISS [Yang *et al.*, 2017], where the α - β s.s.t. was found to provide a much lower uncertainty in determining the amount concentration x(Ar).

In Table 1 a summary of the samples on which the triple point of oxygen was published in International Intercomparisons and at IMGC (later INRiM) is reported. Effect on TPO2 from analysed samples: Argon: +11.75 K mol⁻¹. Nitrogen: -22 K mol⁻¹.

1	2	3	4	5	6	7	8	9	
			Producer	Measured by		Gas data			
No.	Cell	Sealed	(to Owner)	Weasured by	() batch; certified <i>x</i> (Ar)	() batch; certified $x(N_2)$	Gas	Comparison	
0	Long stem	(1973) ^b 1975 ^c	IMGC	IMGC, NPL	(N5); 10, 5	8, 5 ^a	AP&C	Internal, NPL	
1	O200/2	2000	INM	INM. PTB, NRC	(5N5)	(<4)	Air Liquide1	K2, STAR	
2	O202/1	2002	INM	INM. PTB	(N6)		Air Liquide2	STAR	
3	102 (b1)	1976	IMGC [^]	IMGC, PTB	(4N8, <10); 10	8	SIO4	IntInt (Ref), K2, STAR	
4	202 (b1)	1076	IMGC (to INTiBS)	IMGC, PTB	(4N8, <10); 10	8	SIO4	STAR	
4	202 (01)	1970	(at INTiBS)	INTiBS, NRC				K2.4, STAR	
5	9O2 (b4)	1986	IMGC (to PTB)	IMGC, PTB	(5N5, <0.5); 5	0.5	SIAD1	STAR	
6 7 8	10O2 (b4) 11O2 (b4) 12O2 (b4)	1986	(IMGC (to PTB)) IMGC (to DSIR) (IMGC)	IMGC, PTB, NPL	(5N5, <0.5); 5	0.5	SIAD1	NPL, STAR	
9	13O2 (b5)	1999	IMGC (to VSL)	IMGC, PTB	(5N5, <10); 3	5	Messer1	K2.3, STAR	
10	E1O2 (b6)	1999	IMGC (to PTB)	IMGC, PTB	(5N5, <10); 3	5	Messer1	STAR	
11	02-4	1996	РТВ	NPL, PTB, NRC	(5N5) <u><</u> 1	<u>≤</u> 0.5	AGA	NPL, K2, STAR (Ref)	
12	O2-M2-1	1983	NIST	NIST, PTB			KMnO ₄	IntInt, STAR	

Table 1. Overview of the inclusion of oxygen triple-point cells in International Intercomparisons and in comparisons performed at IMGC (later INRiM).

¹ In the past, the only safe way to measure Ar impurity in O_2 was the concentration of Ar by adsorption of most O_2 on getters of various sorts [Roboz, 1967; Yamaguchi, 1967; Karlsson, 1975; De Paz *et al.*, 1974].

					1		1	
13	02-2	1995	NPL	NPL, PTB	(4N8, < 8)	(<5)	Air Liquide	NPL (Ref), K2. STAR
14	O2-F10	1985	NRC	NRC, PTB	(4N8)		Air Products	IntInt, STAR
15	MC-495	1995	VNIIFTRI	VNIIFTRI, PTB	(N5)			NPL, IntInt, STAR
16	MC 897	1997	VNIIFTRI (to PTB)	VNIIFTRI, PTB	(N5); 0.06	2.9		NPL, IntInt, K2.1, STAR
17,18, 19	(6O2 to) 8O2 (b3)	1978	IMGC	IMGC, NRC	(4N8, <3); 65	1.8	SIO5	Internal, K2
20	3O2 (b1)	1976	IMGC	IMGC	(4N8, <10); 10	8	SIO4	Internal
21	4O2 (b2)	1978	IMGC	IMGC		_	O-Math1	Internal
22	5O2(b2.1)	1978	IMGC (to LakeShore Inc.)	IMGC		(<5)	O-Math1	
23 24	14O2 (b5) (16O2 (b5))	1999	IMGC (to KRISS) IMGC (to TIPC)	IMGC	(5N5, <10); <3	(<5)	Messer1	Internal
25 26 27	E2O2 (b7) E3O2 (b7) E4O2 (b7)	1999	IMGC (to NIM) IMGC (to INTIBS) IMGC (to TIPC)	IMGC	(5N5, <10); <3		Messer1	Internal
28	Eb1O2 (b8)	2001	IMGC (to INTiBS)	IMGC, INTiBS	(5N5, <10); <3	(<5)	Messer1	Internal
29	Eb2O2 (b8)	2001	IMGC (to PTB)	IMGC	(5N5, <10); <3	(<5)	Messer1	Internal
30	Ec1O2 (b9)	2002	IMGC	IMGC, INTiBS, NRC	(5N5, <10); <3	(<5)	Messer1	K2.5
31,32	Ec26O2 (b10) Ec27O2 (b10)	2014	IMGC	IMGC	(5N5, <10); <3	(<5)	Messer1	Internal
33	7801	1978	NMIJ	NMIJ, IMGC, NRC	(N4)		_	IntInt
34	CO-7	1984	NBS	NBS, IMGC, NRC			KMnO ₄	NPL, K2
35	8O2 INM	1976	INM	INM. IMGC	(5N8, <12)	<5	Air Liquide	IntInt
36	BCM4	1982	INM	INM, IMGC	(5N8, <12)	<5	—	K2.4, IntInt
37	PP07	1981	NIM (Mod. INM)	NIM	(5N8); 0.15	3.1	—	IntInt
38	PP11	1981	NIM (Mod. INM)	NIM	(N5); 0.8	4.2	—	IntInt
39	MC ^d	1973	PRMI	PRMI			—	NPL, IntInt
40	15	1979	NRC	NRC, IMGC			Matheson	IntInt
41 42	M1 M2	1983	NBS	NBS, PTB			KMnO ₄	IntInt, STAR
43	O-2	2015	NMIJ	NMIJ, INRiM				K2.5
44	Cu-M-3	2008	NRC	NRC				K2.3—K2.5
45	Open cell	1974	NML	NML, NPL			—	NPL
46	Open cell	(1970)	NRC	NRC, IMGC				IntInt, K2
47	Open cell	(1983)	NRC	NRC, IMGC	—		KlO ₄	IntInt
48	Open cell	(≈1999)	KRISS	KRISS, NRC				K2
49	Open cell	1974	KOL	KOL, NPL				NPL
50	Cell ???	1974	AMSW	AMSW, NPL				NPL, IntInt

Comparisons: NPL (1973-75) [Ward and Compton, 1979]; IntInt (1978-84) [Pavese, 1984; Pavese,1983; Pavese *et al.*, 1984]; K2.1-5 (1998-2015) [K2.1 2005; K2.3 2008; K2.4 2012; K2.5 2015]; STAR (1997-2005) [Fellmuth *et al.*, 2005].

^ At INTiBS from 1982 to 1992.

^a Kr: 5 K mol⁻¹

^b IMGC thermometer REC 626 on TPW and O₂ measurements in 1973-74 with gases: SIO-1 (Ar: 3 K mol⁻¹; N₂: (11-14) K mol⁻¹) and SIO-2 (Ar: <8 K mol⁻¹; N₂: 1 K mol⁻¹) [Pavese, 1975]. Lab – NPL = +0.54 mK (see Section 8).

^c Sealed in 1975: SIO-1 (Ar 3: K mol⁻¹; N₂: (11-14) K mol⁻¹) and SIO-2 (Ar: < 8 K mol⁻¹; N₂: 1 K mol⁻¹) [Pavese, 1975]. *T*-NPL = +0.54 mK (**see Section 8**). Measured with thermometer LN1722205, found to be close to REC 646 within 0.1 mK (see Section 4.2 below).

^d [Razhba *et al.*, 1973].

3. Further information sources for the detection of quantitative effects on TPO2 temperature due to argon impurity

For most of the samples, no *specific analysis* for the Ar contents is provided, but only, at best, a batch analysis. Thus, the information obtained investigating the following cells or looking at the results of the listed comparisons can yield primarily only the order of magnitude of the possible effects.

IMGC Cell #0 (Italian standard 1973-77)

Contained several gases at different times, whose impurities are listed in Table 3 below [Pavese, 1978]. It was eventually sealed with gas AP&C-5.

IMGC Cell 1O2 (Italian standard 1978-2000)

1O2 (batch #1), sealed in April 1976, Gas: SIO4 (4N8, <10), $x(Ar) = 10 \cdot 10^{-6}$, $x(N_2)$ batch <14 $\cdot 10^{-6}$, IntInt (Ref).

Internal comparisons: $(+0.2 \pm 0.15)$ mK to previous standard, Cell #0. NRC(F10) - 1O2 = $(<+0.10 \pm 0.10)$ mK (2002).

IMGC Cell 8O2 (Italian standard 2001-2014)

(batch #3) Internal comparisons: $(+0.48 \pm 0.10)$ mK to previous standard, Cell 1O2.

IMGC Cell Ec1O2 (Italian standard since 2015)

Ec1O2 (batch #9–same gas as batches #5–#8), sealed in 2002, gas: Messer Greisheim (5N5, <10), $x(Ar) = 3 \cdot 10^{-6}$, $x(N_2) 5 \cdot 10^{-6}$.

IMGC cells internal comparisons (1973-78)

Figure A1 shows the results of an internal IMGC comparison of oxygen cells from the long-stem Cell #0 to cell 802, taking the former as the reference. [Pavese and Ferri, 1983].

Most IMGC/INRiM cells were sealed in batches (indicated in parenthesis as (bxx) in Table 2) for a group of cells already mounted on the manipulation system. Therefore, they were pre-conditioned in the same way and using the same gas bottle within the same day, according to IMGC procedure. The samples in each batch are thus assumed to have exactly the same impurity content, making their results interchangeable (e.g. see Fig. 1 below). The cells analysed in the following are 32 out of the total 51 listed in Table 2.

NPL intercomparison (1973-75)

(**NPL**-ASMW-IMGC-INM-KOL-NML-NRC-NRLM-PRMI-PTB) No information on the gas used is available, neither for the NMI calibrations, except for the case of IMGC.

International Intercomparison of fixed points by means of sealed cells (IntInt) (1978-84)

(**IMGC**-ASMW-BIPM-INM-NBS-NIM-NML-NPL-NRC-NRLM-PRMI-VSL-INTiBS-NMIJ) No information on the gas used is available from the Final Report.

CCT-K2.x (1998- 200X-2008-2012-2015)

K2 and K2.1-5 **NRC** (INM-IMGC-NBS-NIM-NML-NPL-NRC-NRLM-PRMI), purity: N5 (10⁻⁵) K2 and K2.4. INM-BNM: purity: 5N5 K2 and K2.5. IMGC/INRiM: 4N8 (and Ec1O2: 5N5. For K2.5 – with NMIJ and NRC) KRISS: purity: 4N8 NIST purity n.a. (from KMnO₄ decomposition) NPL: purity: 4N8 (unchecked) PTB: purity: N6 K2.1.VNIIFTRI: purity: 6N K2.3. NMi-VSL: purity: 5N5 (cell Eb2O2 from IMGC) K2.4. INTiBS purity 4N8 (cell 2O2 and Eb1O2 from IMGC) K2.5. NMIJ (cell O-2; impurities effect $u = 9 \mu$ K) K2.2 NIM, INRiM (with IMGC cell E2O2, not yet completed; 2016: measured also at NIM (unpublished)) See Table A4 and also Table 1.

In Table A4, the **orange results** are *inconsistent* with others (see also Section 8b) to d)).

International STAR intercomparison of low temperature fixed points using sealed triple-point cells (1997-2005) (PTB-INM-NIST-NPL-NRC-VNIIFTRI)

See Tables A5 and A6.

The analyses of the measured samples are reported in Table 1.

Recent INRiM papers

See the References and Tables 1-2.

4. Results

Table 2. Overview of comparisons of oxygen triple-point cells. Deviations of the TP temperatures from those of the reference cells are given in mK.

The estimates for the Ar content (x(Ar)) are based on the assumption that x(Ar) of the **reference** is zero: PTB cell O2-4 in columns #5-6; IMGC cell 1O2 in #9–11; NPL in #12; KCRV in #13–14; KCRV in #15–16.

1	2	3	5	6	7	8	9	10	11	12	13	14	15	16
			1997-:	ST/ 2005 [Fe	AR llmuth, 2	012]	Measu	rements	at IMGC	IMGC NPL 1973- 1975 1978-84			CCT-K2.x 1998-2014	
N°	Cell	Sealed	PT ref O	B 02-4	wi ref	ith 1O2	IMC ref 1	GC 02	$IMGC x(Ar)/10^{-6}$	Lab – NPL ^u	Lab – 102–F 0.01	KCRV KCRV= mK	Lab – K 1O2–K –0.18	CRV ^e CRV= mK
			d <i>T</i> /μK	<i>u</i> / μK	μΚ	x(Ar)/ 10 ⁻⁶	d <i>T</i> /μK	<i>u</i> / µK	102) ^a	mK	mK	<i>u/</i> mK	mK ^e	<i>u</i> / mK
0	Long stem *	1975 ^{p, q}					-200 ^r	150	17 ^r	-1.0 ^m 0.2 ^{p, s}			-0.02	(0.15)
1	O200/2	2000	-49	40	+150	13	—	—	(30)				+0.20	0.25
2	O202/1	2002	-65	36	+134	11			(28)					
3	102* ^	1976	-199	35	0 **	(0)	0 **	(0)	0	-1.0 ⁰	0 ** [§]	(0)	+0.18 ^e	(0.15)
4	202	1076	-101	35	+98	8	0	150	(0)					
4	202	1970											(+0.35) ^f	0.35
5	902	1986	-58	36	+141	12	+100	150	26 (29)					
6 7 8	1102	1986	-118	35	+81	7	+100	150	26 (29)	–0.1 ^{m, s}			0	
9	13O2	1999	-16	36	+183	16	-	_	4 (33)				+0.24	0.15
10	E1O2	1999	5	36	+204	17			4 (34)				(+0.49) ^f	
11	O2-4	1996	0	0	+199	17				+0.3 ^s +0.6 ^s			+0.4	0.25
12	O2-M2-1	1983	-27	35	+172	15			(36)		-0.19	0.15	+0,15	0.25
13	02-2	1995	-109	35	+90	8			(25)	0 ^g			+0.2	0.18
14	O2-F10	1985	-281	36	-82					-0.2 ^s			(+0.21) <0.10 ^d	0.22 0.10
15	MC-495	1995	-117	46	+82	7			(24)				+0.05	0.3
16	MC 897	1997	-26	38	+173	15			(32)				+0.1	0.3
19	802	1978					+480	150	57		+0.47	0.15	+0.66	0.15
20	302	1976					0							
21	4O2	1978					+250	150	38					
22	502	1978					+250	150	38					
23	14O2	1999					+60	30	5					
25	E2O2	1999					+190	50	15		-0.12	0.15		
28	Eb1O2	2001							4					

29	Eb2O2	2001	(+60)	30	4 (5)				(+0.48) ^f	0.35
30	Ec1O2*	2002	+25	30	2					
31	Ec26O2	2014	+40	30	4 ^c					
33	7801	1978			170 ^h	-+0.1 ^s	+2.01	0.15	(+0.51) ^f	0.27
34	CO-7	1984			16 ^h		+0.19	0.15	+0.3	0.1
35	802 INM	1976					-0.15	0.15		
36	BCM4	1982					-0.16	0.15	-0.15	0.15
37	PP07	1981					-0.02	0.15		
38	PP11	1981					-0.13	0.15		
39	МС	1978			7 ^h	-0.1 ^s -0.3 ^s	+0.09	0.15		
40	15	1979			23 ^h	-0.7 ^s	+0.28	0.15		
41 42	M1 M2	1983			7 ^h	+0.2 ^{\$}	+0.09	0.15		
43	O-2	2014							(+0.45) ^f	0,24
44	Cu-M-3	2008							+0.30	0.25
45	Open cell	1974				-0.1 ^s				
46	Open cell	(1970)	+2300 ^h		215		+0.29	0.15	+0.4	0.25
47	Open cell	(1983)	<100 ^d	100	<8	-0.2 ^s				
48	Open cell	(≈1999)							+0.28	0.15
49	Open cell	1974				+0.1 -0.5				
50	Cell ???	1974				-2.1	+0,21			

* Italian Standards in subsequent times. ** Estimated at IMGC to be $(+200 \pm 150) \mu$ K, i.e., $x(Ar) = 17 \cdot 10^{-6}$, reference cell being the O₂ long-stem sealed Cell #0 [Pavese and Ferri, 1983] $T - KCRV(IntInt) = (-0.01 \pm 0.22) \text{ mK.}$ At INTiBS from 1982 to 1992.

^a According to $dT/dx(Ar) = 11.75 \text{ K/mol}^{-1}$ from [Steur *et al.*, 2017, Steur *et al.*, 2020]. In parenthesis shown with the value *in column 8 added*.

- ^b A comparison [Yang *et al.*, 2014] was performed in 2015 between **KRISS** (using IMGC cell 14O2) and **NMIJ** (comparison in a block with NMIJ standard realisation of ITS-90) the result was ($\pm 0.27 \pm 0.5$) mK higher for NMIJ, i.e., $x(Ar)/10^{-6} = 28$, with the KRISS cell having $x(Ar)/10^{-6} = 5$ —see cell 14O2).
- ^c Estimated from fit.
- ^d This comparison was performed in 1977 at NRC with IMGC cell 1O2.
- ^e with 8O2 corrected by -0.48 mK to cell **1O2**, such that (KCRV(K2) 8O2) = -0.18 mK.
- ^f With respect to the KCRV(K2): probably wrong (see Section 8) **2O2** (INTiBS) F10 (NRC) = -0.04 mK.
- ^g Reference: NPL, thermometer LN 1728839.
- ^h From IntInt 1978-84.
- ^m On scale IPTS68-NBS.
- ^o PRMI IMGC as measured at IMGC [c10].
- P IMGC thermometer REC 646 on TPW and O₂ (Cell#0) measurements in 1973-74 with gases: SIO-1 (Ar 3 K mol⁻¹; N₂ 11-14 K mol⁻¹) and SIO-2 (Ar <8 K mol⁻¹; N₂ 1 K mol⁻¹) [c1]. *T* NPL = +0.54 mK (*probably wrong (see Section 8 a)*)). The IMGC thermometer was REC 646: @54.361 K, $W_{TPO2}(1722205) W_{TPO2}(1728839) = +90 \ 10^{-7}$ (scale IPTS68-NPL) with respect to ref NPL: *W*(54.361 K) = 0.091 9739 @273.16 K (IMGC): 25.562873 Ω (NPL [b7]) (25.56292 Ω in [Ward and Compton, 1979])
- ^q Sealed in 1975 and measured with thermometer LN1722205, found to be close to REC 646 within 0.1 mK (see Section 4.2 below).
- ^r See Section 4.2 for an estimate of T_{O2} (Cell #0) from [Pavese and Ferri, 1983].
- ^s Lab 1975 calibration at local fixed point (no further specification except for IMGC).
- ^u Lab-NPL in the Table is with respect to the Lab fixed points. The NPL comparison standard uncertainty *u* at the TPO2 was reported to be 20 μ K. The NPL ref thermometer was LN 1728839: *R*(54.361 K) = 2.350 582 Ω , @273.16 = 25.559 56 Ω , *W*(54.361 K) = 0.091 9649). The IMGC thermometer was REC 646: *R*(273.16 K) = 25.56292.

Then, in Table 2, columns 5–8, first the results of the STAR comparison are reported (with PTB cell O2-4 as the reference cell), in columns 9–11 the same results are recomputed by using instead IMGC cell 1O2 as the reference. Then, in the same columns other independent measurements are reported, made at IMGC/INRiM after 2006) on the same IMGC cells measured at PTB and on other IMGC/INRiM O₂ cells.

Finally, the results of the international comparisons made since 1975 are also given, using the respective samples as reference: IPTS-68 for NPL (column 12); IPTS-68 (and cell 102) for IMGC in the IntInt (column 13-14); ITS-90 and their cell F10 for NRC in the K2 (column 15-16). Notice that the latter was followed in the years by bi/tri-lateral K2 Supplementary comparisons with NRC: K2.1 NRC-VNIIFTRI (2005); K2.2 INRiM-NIM (INRiM only, not completed); K2.3 NRC-VSL; K2.4 (2012); NRC-BNM-INTIBS (2008); K2.5 NRC-INRiM-NMIJ (2015).

For these comparisons it is sometimes necessary to obtain the results through *calibrated thermometers* or through the KCRV (the full list of the relevant thermometers is collated in Table 5), as follows for Table 2:

Cell #0 (Long stem): IMGC thermometer REC 626 on TPW and O₂ measurements in 1973-74 with gases: SIO-1 (x(Ar) 3 (guess); $x(N_2)$ (11-14)) and SIO-2 (x(Ar) < 8 (guess); $x(N_2)$ 1 (guess) [Pavese, 1975]. T - T(NPL) = +0.54 mK (Note p). **Permanently sealed in 1975** and measured with thermometer LN1722205, found to be close to REC 646 within 0.1 mK (see Fig. 2 [Pavese, 1978]) (Table 2, Note q)

102 (batch #1): $T - \text{KCRV}(\text{IntInt}) = (-0.01 \pm 0.22) \text{ mK}$ (Note §); NRC(sample #36) $- 102 = (<100 \pm 100) \text{ mK}$ (1977, Note d)

2O2 (batch #1):With respect to the KCRV of K2.4: [2O2 (INTiBS) - F10 (NRC)] = -0.06 mK, Note f).

802 (batch #3))—): 802 corrected by -0.48 mK = Cell#0 is such that KCRV(K2) -802 = -0.18 mK. **1402** (batch #5): 2016 KRISS (IMGC cell) - NMIJ (ITS-90) = -0.27 mK (NMIJ, $x(\text{Ar})/10^{-6} = 28$, with KRISS, $x(\text{Ar})/10^{-6} = 5$) [Yang *et al.*, 2015]

7801, **CO-7**, **Open cell #35**: From Intercomparison IntInt (Note h); *T*(CO-7) on Scale IPTS68-NBS.

For NPL comparison measurements (IPTS68, $R_0 @ 273.15$ K, the ice point): NPL – NBS (IPTS68) = +0.5 mK to +0.6 mK. [Pavese, 1975]

NPL 1728839 in Table 5 of [Ward and Compton, 1979]: $R(54.361 \text{ K}) = 2.350 582 \Omega$, $@T(273.16 \text{ K}) = 25.559 56 \Omega$, W(54.361 K) = 0.091 9649; $W_{\text{TPO2}}(1722203) - W_{\text{TPO2}}(1728839) = +24 \cdot 10^{-7}$.

IMGC, **REC 646**: @54.361 K, $W_{\text{TPO2}}(646) - W_{\text{TPO2}}(1728839) = +90 \cdot 10^{-7}$ with respect to ref NPL (scale IPTS68-NPL), W(54.361 K) = 0.091 9739; @273.16 K on IPTS68-NBS = 25.56292 Ω ; (IMGC): 25.562873 Ω (NPL [Pavese, 1975]), $R(54.361 \text{ K}) = 2.351 117 \Omega \quad \Delta R(\text{IMGC}) = +0.000 54 \Omega$, $\Delta T = +0.005 \text{ K}$.

VNIIFTRI, PL01-6 (and **PL02-6, 45**). From NPL comparison @54.361 K, $W_{\text{TPO2}}(\text{PL01-6}) - W_{\text{TPO2}}(1728839) = -484 \cdot 10^{-7}$, $W_{\text{TPO2}}(\text{PL02-6}) - W_{\text{TPO2}}(1728839) = -407 \cdot 10^{-7}$. @273.15 K (PRMI 1974) R(PL01-6) = 25.270 79 Ω , $\Delta R = -1223 \ \mu\Omega$, $\Delta T = -12.2 \ \text{mK}$, $R_0(\text{NPL}) - R_0(\text{PRMI}) = 240 \ \mu\Omega$, $R_0(\text{NPL}) = 25.271$ 03 Ω [Ward and Compton, 1979]; R(PL02-6) = 25.137 29 Ω , $\Delta R = -1023 \ \mu\Omega$, $\Delta T = -10.2 \ \text{mK}$. @273.15 K (NPL1976) R(PL01-6) = 25.271 02 Ω .

From **measurements at IMGC** on its fixed points, in the subsequent years 1977–80. [Pavese, 1981]: See Tables 3 and 4.

Table 3: Resistance values of the three SPRTs PL01-6, PL02-6, and 45 at the triple points of water and oxygen. Sources of the data: [Pavese, 1981] [Ward and Compton, 1979] The resistance values are given in Ω .

Lab	Year	PL01-6	PL02-6	45
		R _o (273.15 K))	
PRMI	1974	25.270 79	25.137 29	25.679 18
NPL	1976	25.271 02	25.137 49	25.679 38
NPL [W&C]	1976	25.271 03		25.679 41

IMGC	1977	25.271 011 ^a	25.137 478	25.679 382
IMGC	1977	25.271 134	25.137 492	25.679 381
IMGC	1978	25.271 136	25.137 500	25.679 412
IMGC	1980	25.271 168	25.137 503	25.679412
		O ₂ (54.361 K)	
NPL	1978	2.322 781	2.310 725	
(IPTS68-NPL)	K	54.3622	54.3620	
PRMI – NPL	mK	+0.1		+0.3
IMGC				
Cell 4O2	1977	2.322 833 ^a		
4O2 ^b	1977	2.322 888	2.310 756	2.362 190
8O2 ^b	1978	2.322 916	2.310 789	
802	1980	2.322 917		
5O2 ^b	1980	2.322 881	2.310 733	
Assigned value	1980	2.322 881	2.310 783	2.362 190
(IPTS68-NPL)	K	54.3620	54.3622	54.3609
PRMI – IMGC	mK	+1.0	+1.2	-0.1

^a Thermometer changed after this date. ΔT value differences may reflect also thermometers' instability with time.

^b 4O2 and 5O2 from same batch b2, so assumed to realize the same value, +0.25 mK with respect to cell 1O2; 8O2 - 1O2 = +0.48 mK, so 8O2 - 4O2 = +0.23 mK, while here: #PL01-6, 8O2 - 4O2 = 32 $\mu\Omega \Rightarrow$ +0.32 mK; #PL01-6, 8O2 - 4O2 = 33 $\mu\Omega \Rightarrow$ +0.33 mK.

Table 4: Resistance values of the three SPRTs PL01-6, PL02-6, and 45 (from IMGC Laboratory book)

from IMGC CALIBRATION Tables @	54.361 K	PL01-6			PL02-6		45		
PRMI IN	NGC78 NGC84	2,32279	25,27079 0,091916003	-4,3E-05 -0,43 -7,5E-05 -0,75	2,31062	25,13729 0,091920012	2,362208	25,67918 0,09198923	1,8E-05 0,18 mK
Ν	PL			-3,3E-05 -0,33					
IMGC78	//GC84	2,322833	25,271011 0,0919169	-3,2E-05 -0,32					
IMGC84		2,322865	25,27114 0,091917697				2,36219	25,679381 0,09198781	
NPL IN	/IGC78	2,322823	25,27103 0,091916436	-1E-05 -0,1					
Р	RMI			-4,2E-05 -0,42					

In Table 5 the **thermometers** used to assess the temperature of oxygen triple point realizations are listed.

Table 5. Resistance values of SPRTs at the triple points of water and oxygen (In **bold**: reference thermometers.)

	Exercise:	#1	#2	#3	#5			
		IPTS-68	IPTS-68	ITS-90				
#	Thermometer	NPL	IntInt	K2	Others	R (TPO ₂)/	R ₀ /Ω ^b	Scale realisation
		Comp				$\Omega^{\mathbf{a}}$		
1	(217278)	ASMW	ASMW			2.329294	25.346730	NPL
	207278							
2	217990	ASMW	ASMW			2.314124	25.186290	NPL
3	217977	ASMW	ASMW			2.335410	25.418300	NPL (#1)

						2.335428	25.418580	ASMW(#2) on 1O2
4	REC 646	IMGC				2.351028	25.562960	NBS
						2.351114	25.562910	NPL
						2.351327	25.563117	IMGC
						2.301027	25 563260	····1977
5	LN 1812283	INM				2 340650	25.494500	NPL
5	21012205	11 (1)1				2.340685	25 494711	INM
6	I N43	KOI				2.310003	25.191711	NPI
7	T/	KOL		-		2.550014	25.50+515	
/ 8	I N 1812270	NBS		-		2 346843	25 540700	
0	LN 1012279	NDS	NDC	-		2.340043	25.549790	NDS (#1) NDI
9	LIN 1012202	INDS	INDS			2.342009	25.510260	$\frac{\text{NDS}(\#1)}{\text{NDS}(\#2)} \approx \frac{802}{2}$
						2.342823	25.510540	NDS (#2) 011 802
10	LN 1010004	NDC		-		2.342910	25.310280	
10	LN 1812284	INBS		-		2.341201	25.496390	NDI
11	LN 1705628	NML		-		2.351433	25.570230	NPL
12	LN 1/316/6	NML	NML			2.34/185	25.522800	NML 1984
						2.347195	25.522800	NPL 1984
						2.347202	25.522800	NPL (#1)
	* * * * * * * * * *			-		2.347228	25.522800	NBS (#2) on 802
13	LN 1158062	NRC				2.345837	25.469660	NPL
L .	* * * 4 * 2 2 2 1			4		2.345804	25.469547	NRC
14	LN 1158066	NRC		4		2.349702	25.510850	
15	LN 1722203	NRC		-		2.346279	25.512100	
16	6601	NRLM				L		
17	6803	NRLM				2.353161	25.558	
18	LN 1728839	NPL	NPL	NPL		2.350582	25.55956	NPL (#1)
						2.350556	25.55957	NPL (#2) on 1O2
						2.351434	25.560733	NPL (#3)
						2.345142	25.560733	NRC (#3)
19	153374	NPL						
20	LN 1676928	NPL				2.344225	25.53561	NPL
21	PL01-6	PRMI	IMGC		IMGC	2.322790	25.27079	PRMI
						2.322823	25.271030	NPL
						2.322823	25.271140	IMGC
						2.322833	25.271011	IMGC
22	PL02-6	PRMI			IMGC	2.310620	25.13729	PRMI
						2.310745	25.137500	NPL
23	45	PRMI	IMGC		IMGC	2.362208	25.67918	PRMI
						2.362255	25.679390	NPL
						2.362190	25.679381	IMGC
24	170138	PTB		1				
25	188682	PTR		1		2.246233	24,366050	NPL
26	LN 1778842	PTR	1	1		2.341698	25 52487	NPL
27	226321		BIPM	1			25 369110	from Ar tn
28	188640	-	NIM	1		not on O ₂	25.507110	nom m up
20	IN 1521380		NRC	1		2 3//192	25 523050	NPI
29	LIN 1321307		THE			2.3++102	25.525050	
						2.344137	25.525021	NRC
						2.344243	25.525552	NRC $(\#2)$ on 102
20	7691	-	NDI M			2.344233	25.323332	nRC (#2) 011 102
30	7001	-		-		2.333700	25.505000	on 802
22	232/00	-		NDC		2.300377	23.087300	(#2)
32	LN 1774095		INBS	NBS		not on O_2	25 5 (1911	(#2) NDS (#2)
						2.349308	23.301811	$\frac{1NDS}{MDC}(\#3)$
22	LN 1040201					2.349531	25.501811	INKU(#5)
33	LN 1842381	PKMI	PKMI			2.343744	25.544950	ASMW(#1)
2.4	1 11 000700		DB4	4		2.343703	25.544950	PRMI (#2) on 8O2
34	LN 232788	-	INM	4		not on O ₂		
35	LN 1812283	-	INM	4		not on O ₂		
36	7703		NIM			not on O ₂		
37	LN 1781356		NRLM			not on O ₂		
38	6601		NRLM			2.308478	25.110420	NRLM

39	7709		NIM			2.328237	25.352963	NIM
40	LN 1872179		NRC			2.349496	25.582650	NRC (unsure)
41	LN 1886904			BNM-INM		2 350042	25 584655	INM
						2.349992	25 584655	NRC
42	1041			BNM-INM		2.347928	25.501695	INM
72	1041			DIAMI HAMI		2.347999	25.572698	NRC
13	L N 1857277			IMGC &		2.5+1777	23.372070	IMCC
45	LIN 1037277			5 INRiM				INIGC
				& 5 NMII				
4.4	LN 1960051			MGC &				IMCC
44	LIN 1000931			5 IND:M				INGC
15	LN 1992002					2 245424	25 544272	VDICC
43	LIN 1880900			KKI55		2.343434	25.544275	NDC
16	1042			KDICC		2.343399	25.344275	NRC VDICC
46	1043			KKISS		2.332769	25.410822	KKISS
17	X XX 177 4000			NUCT		2.332850	25.410822	NRC
47	LN 1774092			NIST		2.341603	25.527675	NBS
						2.341668	25.527675	NRC
48	213865			NPL		2.310435	25.164672	NPL
						2,309570	25.163620	NPL 1984
						2.309558	25.164672	NRC
49	LN 1872174			NRC		2.341003	25.499358	NRC
						2.341096	25.499358	NRC
50	LN 1842381			PTB		2.343704	25.54599	
						2.343665	25.54599	NRC
51	LN 1842379			PTB		2.340062	25.50632	
						2.340150	25.50632	NRC
52	346			.1 VNIIFTR				
53	476			.1 VNIIFTR				
54	LN 1820627			3 VSL-NMI		2 343107	25 543765	VSL
51	1020027			&NRC		2 343121	25.543766	NRC
55	1599			3 VSL-NMI		2 345743	25.533513	VSI
55	1577			& NRC		2.345725	25.535515	NRC
56	23/721			4 INTIRS		2.545725	25.555500	
50	234721			& INF				
				CNAM &				
57	LN 1966224			A INTIDO				
57	LN 1800334			.4 INTIBS				
				& LNE-				
				CNAM &				
50	D0054 7			NRC				
58	RS954-7			.5 NMIJ &				
	DOOTA			NRC		-		
59	RS85A-6			.5 NMIJ &				
	00,0000			NKC	DIDIC	0.000777	04.0100000	
60	226322				BIPM	2.290773	24.913330	NPL/6
						2.290740	24.913042	IMGC
						2.290740	24.913246	INM
						2.290757	24.913180	NPL
						—	24.913330	BIPM
61	LN 1832685	NPL				2.339780	25.507110	
62	LN 1832689	NPL	ļ			2.346380	25.534790	
63	LN 1832691	NPL]			2.341410	25.528090	
64	217895	NPL]			2.277240	24.817510	
65	217894	NPL				2.320073	25.294540	
66	217890	NPL	1			2.300590	25.083000	
67	213865	NPL	1			2.309570	25.163620	
68	221476	NPL	1			2.259370	24.585370	
69	221420	NPL	1			2 328070	25 338900	
70	141480	NPI	1			2.523070	23.333700	
70	12/0	NDI				2.195500	25.657200	
72	1247 2 DDMI	INFL	1			2.344300	25.0904	
12						2.304044	23.0894	

70			-	2 200 400	25.0240	
13	14 PRMI			2.299499	25.0349	
74	153373		CCT-64	2.296254	24.9830	
75	153374	NPL		2.327288	25.30792	
76	REC 838			2.350380	25.565962	NBS
				2.350564	25.566498	IMGC
					25.566420	Same 1977
77	LN 1512846		NBS-55	2.348719	25.547466	NBS
			1959			
78	LN 1521389	1976	On	2.344110	25.523027	NRC
			IMGC	2.344137		
			cells	2.344182	25.523050	
79	LN 1577530	1961&69		2.350988	25.499961	PSU
80	LN 1577531	1961&69		2.352898	25.538478	PSU
81	LN 1722205	1975	IMGC	2.341179	25.459406	NBS
				2.341222	25459272	IMGC
82	LN 1754792		IMGC	2.345143	25.559367	IMGC
83	LN 1761201	1977		2.343794	25.522976	NBS
					25.522799	IMGC
				2.343803		
84	LN 1792424		NBS	2.343938	25.502882	IMGC
85	459		NML	2.336506		NBS-55
86	LN 1756761		NML	2.348662		[Kemp, 1976]
87	1284			2.344360	25.511800	NPL
88	5435	2019	INRiM	2.341488	25.493438	INRiM

^a $T(tpO_2) = 54.361$ K @ IPTS68 and 54.360x K @ITS-90.

^b $T_0 = 273.15$ K @IPTS68 and previous; $T_0 = 273.16$ K @ITS-90.

5 Reference cells

5.1 IMGC/INRiM Reference cells

Reminder: The values of the TPO2 temperature, T_{TPO2} , and the temperature, at which R_0 has to be given, T_0 , are different for different scales. This is summarised in Table 6.

Table 6. T_{O2TP} and T_0 on different temperature scales [Pavese, 1970]

Scale	<u>То2тр/К</u>	<u>T_0/K</u>
CCT-64	54.352	273.15
NBS-55	54.3528	273.15
NPL-61	54.3647	273.15
PRMI-54	54.3644	273.15
PSU-54	54.3405	273.15
(IPTS68	54.361)	273.15
(ITS-90	54.3584)	273.16

5.1.1 Cell #0

The Cell #0, the long stem cell (made in 1973 and eventually sealed in 1975) served as the IMGC standard until 1977, and its results are shown in Fig. A1 [Pavese, 1978]. The thermometers used in Figure A2 were: REC 646 (\bullet), REC 848 (\blacksquare) (and LN 1722205 (\bullet) only since late 1975), having different calibrations corrected to zero current, all originating from the calibration on the IPTS-68-NBS scale obtained in 1969-1971. From the calibration data provided in Table 3 of [Pavese, 1978], one can now compute the differences between the resistance values measured in cell #0 and the calibration values. These differences are shown in Figure A2 for F = 1 [Pavese, 1978], becoming Fig. 1 here, where the mean value, for thermometers REC646 and REC848, was $\Delta T_{Cell#0}$ (IPTS-68-NBS = 54.361 K) = (+1.19 ± 0.06) mK, so $T_{Cell#0}$ (IPTS-68-NBS) = 54.3622 K (until the cell was permanently sealed).

Figure 1. Mean deviation of the resistance values measured for thermometers REC646 and REC848 in cell #0 from the calibration values obtained at NBS using IPTS-68-NBS scale realised in 1969-1971

The thermometers remained stable until April 1975 (then REC 838 became unstable after a new calibration involving—as usual at that date—the tin point). From the NPL comparison, IPTS68-NBS – IPTS68-NPL = -0.5 mK. In IntInt Table VII.4.b, [Pavese, 1984] the value on IPTS68-NBS is 54.3614 K, thus $T_{O2,Cell\#0} = 54.3626$ K. On the other hand (see Note p to Table 4), T(IMGC) - T(NPL) = +0.2 mK in 1973-75 (see Table 3 in [Pavese, 1978]), thus, from thermometer REC646 as measured at NPL, $T_{O2tp}(Cell\#0) = 54.3620$ K, basically confirming Fig. 1.

On the ITS-90, $T_{O2tp} = 54.3584$ K, i.e., 2.6 mK lower with respect to IPTS-68, therefore, from the NBS previous calibration, $T_{Cell\#0}(ITS-90) = 54.3596$ K.

5.1.2 Cell 1O2

Cell 1O2 was the first oxygen cell sealed at IMGC in 1976, and was then compared with Cell#0 and used as IMGC standard from 1978. See Section 6.1.

5.1.3 Cell Ec1O2

Italian standard since 2015. See Section 6.2.

5.2 Non-IMGC/INRiM Reference cells in other inter-comparisons

5.2.1 NPL: (data not available)

5.2.2 **NRC:** F10 then Cu-M-3

5.2.3 **PTB:** O2-4

5.2.4 **NMIJ:** O-2

6. Discussion

6.1 Observed anomalies in the STAR comparison results

As shown in Table 4, most of the cell differences with the PTB reference cell O2-4 turned out to be significantly *negative*. This may indicate that they are affected by N₂ **impurities** of the order of $x(N_2) = 5-25 \cdot 10^{-6}$, more than most (batch) analyses, or that the PTB cell O2-4 is affected instead by argon impurity more than indicated by the AGAgas assay ($x(Ar) = 1 \cdot 10^{-6}$).

In [Fellmuth *et al.*, 2012], the way PTB makes the extrapolation of the melting values to the liquidus point is linear in temperature versus fraction of sample melted, but the melting range of O_2 is so small

that this operation is an unlikely cause for the negative differences. (In reality, the lower temperature value at the middle of the plateau was used. [Fellmuth and Rourke, 2021]. This fact tends to report lower values for the older cells, like, e.g., the 1O2–3O2 are, because of an increase of the melting range with time (see also [Kołodziej *et al.* 2017])) In addition, for samples permanently sealed in a cell, almost 50 years of experience has shown that the samples do not change the original contamination with time.

In the particular case of IMGC cells measured at the STAR comparison, there is a mismatch between the observed depression and the known Ar and N₂ contents in them. Cells 1O2 to 3O2, coming from the same batch, have the same contamination, while the PTB results are different by $(98 \pm 35) \mu$ K, equivalent to $x(Ar) = 8 \cdot 10^{-6}$. In addition, their apparent contamination reported by PTB (PTB has reported only temperature differences [Fellmuth and Rourke, 2021]) is inconsistent with IMGC cell differences measured at IMGC in the previous and subsequent years, and in relationship with the cells from other laboratories measured in previous intercomparisons: NPL, IntInt and K2 (and a few during the EU Project MULTICELLS [Pavese, 2003]). Table 4 (and Fig. 2) summarises all of them as available at INRiM.

6.1.1 Checks on the STAR comparison (ITS-90, $R_0 = R@273.16$ K)

In Table 2, column 7, the comparison results are recomputed using as a **reference IMGC cell 102**, instead, whose contamination was checked at IMGC and in other Labs in several occasions (after filling and sealing IMGC and other Labs could only check the relative contamination by comparison with other cells, except in a few cases where the contamination of the original gas got a new purity assay), and the corresponding Ar contamination computed in column 8. For the IMGC cells, the obtained results have also been compared with other internal measurements performed at IMGC on the same cells, also using cell 102 as reference, for comparison with column 7, in column 9 (uncertainty in column 10).

A) IMGC cells in the STAR comparison

—cell **102**, the discrepancy is larger than the PTB uncertainty

—cell **2O2**, the discrepancy is larger than the PTB uncertainty and than the IMGC-known difference to cell 1O2, of the *same batch* #1

-cell 9O2, the accordance with columns 7 and 9 is for sign and within the PTB uncertainty

—cell **11O2**, the accordance with columns 7 and 9 is for sign and within the IMGC uncertainty

-cell **1102–902**, difference (-60 ± 35) μ K: inconsistent, being both from the same batch #4

—cells **13O2** the large PTB inconsistency is with the argon content in the bottle Messer1 of $4 \cdot 10^{-6}$ (as INRiM checked).

—for cell **E1O2** the large PTB inconsistency is with the argon content in the bottle Messer1 (as INRiM checked [Steur *et al.*, 2020]).

B) Non-IMGC cells in STAR comparison

—**cell O2-4** (ref PTB) differs from 1O2 by +199 μK (comparison uncertainty \approx 40 μK). Assuming the Ar content of 1O2 to be zero, this difference would mean for O2-4 to contain $x(Ar) = 17 \cdot 10^{-6}$ instead of $x(Ar) = 1 \cdot 10^{-6}$ according to the AGA assay.

—cell O2-M2-1 (NBS/NIST) differs from 1O2 by (+172 ± 35) μ K, corresponding to *x*(Ar) = 15·10⁻⁶ under the same assumption as for O2-4 (such a large Ar content is questionable because the oxygen sample was produced at NBS from KMnO₄).

—cell O2-2 (NPL, ref in NPL intercomparison) differs from 1O2 by (+90 ± 35) μ K, corresponding to $x(Ar) = 8 \cdot 10^{-6}$.

—cell O2-F10 (NRC, reference in K2 and K2.1) differs from 1O2 by (–82 \pm 36) μ K, indicating a dominant N₂ contamination (but see below).

-cell MC-495 (PRMI/VNIIFTRI) differs from 1O2 by (+82 ± 46) μ K, corresponding to *x*(Ar) = 7.10⁻⁶. -cell MC-897 (PRMI/VNIIFTRI) differs from 1O2 by (+173 ± 38) μ K, corresponding to *x*(Ar) =

-cell MC-897 (PRMI/VNIIF1RI) differs from 1O2 by $(+1/3 \pm 38)$ µK, corresponding to $x(Ar) = 15 \cdot 10^{-6}$.

See Fig. A3.

6.2 Results from other comparisons

6.2.1 IMGC cells in non-STAR comparisons

—Cell #0 is of the long stem type made in 1973 (sealed from 1975, still existing but not measured anymore since a long time). The long stem cell was the reference for the IMGC measurements at the NPL comparison, where it was found IMGC(IPTS68-NBS) – NPL = ± 1.0 mK and ($\pm 0.2 \pm 0.15$) mK for IMGC thermometer REC 646—see Fig. A1 and Note p to Table 2.

--Cell 1O2 (batch #1) was the effective IMGC reference cell in comparison K2, though the reference cell in the Report was the 8O2, because the latter was corrected for the difference to this one of +0.48 mK, and is therefore linked to K2. The difference with respect to Cell #0 was (+0.2 \pm 0.15) mK. It also participated in the comparison IntInt and was found to differ from the KCRV (differing from 1O2 by – 0.01 mK) by (-0.12 \pm 0.15) mK, compatible with the gas.

--Cell 2O2 (batch #1), lent to INTIBS for its participation in K2.4, was found to have a difference with respect to the KCRV of K2.4 (where 2O2 (INTIBS) – F10 (NRC) = -0.06 mK) of ($+0.35 \pm 0.34$) mK (*but see Section 8*).

-Cell 11O2 (batch #4) also *indirectly* participated in the NPL comparison via a thermometer calibrated on the IPTS68-NBS scale, showing a difference of $(+0.1 \pm 0.1)$ mK.

— Cell 13O2 (batch #5) was sealed in the *same batch* of cells 14O2 (then supplied to KRISS) and 16O2 (then supplied to TIPC). They have therefore the same Ar content as 13O2. Cell 14O2 was measured at IMGC and the difference with 1O2 was found to be (+60 ± 30) μ K, i.e. $x(Ar) = 5 \cdot 10^{-6}$, thus the contamination of the batch of cells is compatible with the gas assay.

— Cell E1O2 (batch #6) was sealed in the *same batch* of cells E2O2 (then supplied to NIM), E3O2 (then supplied to INTiBS) and E4O2 (then supplied to TIPC). These have thus the same Ar content as cell E1O2 (and as cells 13O2-16O2). Cell E2O2 was measured at IMGC and the difference with 1O2 was found to be (+85 ± 30) μ K, i.e. x(Ar) = 7 · 10⁻⁶, thus compatible with the gas assay.

6.2.2 Non-IMGC cells in non-STAR comparisons

a) NPL comparison (reference NPL) (IPTS68, R₀ @ 273.15 K)

(Note: In this comparison $R_0 = R@273.15$ K, the ice point)

- Cell MC (PRMI) $T_{\text{PRMI}} T_{\text{NPL}} = (+0.1 \pm +1.0) \text{ mK}.$
- Cell F15 (NRC) $T_{\text{NRC}} T_{\text{NPL}} = (+0.2 \pm +0.7) \text{ mK}.$
- Cell M1, M2 (NBS) $T_{\text{NBS}} T_{\text{NPL}} = (+0.5 \pm +0.6) \text{ mK}.$
- **Open cell #43** (Table 4) (NML) $T_{\text{NML}} T_{\text{NPL}} = (+0.1 \pm 0.02) \text{ mK}.$
- **Open cell #45** (Table 4) (NRC) $T_{\text{NRC}} T_{\text{NPL}} = (+0.2 \pm 0.02)$ mK. A comparison was also performed in 1978 [Ancsin, 1978] at NRC with IMGC cell 1O2 and with INM, it was found $T_{\text{NRC}} T_{\text{IMGC}} =$

 $(<+0.1 \pm 0.1)$ mK, while $T_{\text{NRC}} - T_{\text{INM}} = (-0.4 \pm 0.1)$ mK.

— **Open** (unsure) **cell #47** (Table 4) (ASMW) $T_{\text{ASMW}} - T_{\text{NPL}} = (-0.1 \& +0.5) \text{ mK}.$

b) *IntInt* comparison (reference cell IMGC $1O2 \equiv KCRV$) (IPTS68, $R_0 @ 273.15$ K, the ice point)

- Cell 7801 (NRLM) Outlier, with $T_{\text{Lab}} T_{\text{KCRV}} = +2.02 \text{ mK}$, corresponding to $x(\text{Ar}) = 170 \cdot 10^{-6}$.
- Cell CO-7 (NBS) As measured at NBS, $T_{\text{Lab}} T_{\text{KCRV}} = +0.19 \text{ mK}$.
- Cell 8O2 (INM) As measured at INM, $T_{\text{Lab}} T_{\text{KCRV}} = -0.15$ mK. Also measured at NIM (+0.02 mK), NML (+0.24 mK) and NRC (-0.03 mK).

— Cell BCM4 (INM) As measured at INM, $T_{Lab} - T_{KCRV} = -0.15$ mK. Also measured at NRC (-0.01 mK).

— Cell PP07 (NIM) As measured at NIM, $T_{\text{Lab}} - T_{\text{KCRV}} = -0.02 \text{ mK}$.

— Cell PP11 (NIM) As measured at NIM, $T_{\text{Lab}} - T_{\text{KCRV}} = -0.13 \text{ mK}$.

— Cell MC (PRMI) As measured at PRMI, $T_{\text{Lab}} - T_{\text{KCRV}} = +0.09$ mK, corresponding to $x(\text{Ar}) = 7 \cdot 10^{-6}$.

— Cell 15 (NRC) measured at NRC, $T_{\text{Lab}} - T_{\text{KCRV}} = +0.16 \text{ mK}$, corresponding to $x(\text{Ar}) = 13 \cdot 10^{-6}$. Also measured at ASMW (+0.15 mK), IMGC (+0.28 mK), INM (-0.12 mK), NML (+0.14 mK), and NPL (+0.08 mK).

— Cells M1, M2 (NBS) As measured at NBS, $T_{\text{Lab}} - T_{\text{KCRV}} = +0.09 \text{ mK}$. See Fig. A4.

c) **Comparison** *CCT-K2.x* (NRC reference thermometer LN 1872174 and cell F10 until K2.1) (ITS-90, $R_0 @ 273.16$ K)

— Cell O2-2 (NPL, ref cell in NPL intercomparison). In K2, the cell showed a difference of $(+0.25 \pm 0.18)$ mK from the KCRV, where the difference with IMGC cell #0 was (-0.18 ± 0.15) mK, so that O2-2 is $(+0.26 \pm 0.25)$ mK with respect to IMGC 1O2.

—**Cell O2-F10** (NRC, reference in K2 and K2.1). From K2.4, where a difference (2O2 (IMGC/INTiBS) – F10 (NRC) = -0.06 mK) was found, one can get a difference with cell 1O2 of ($+0.21 \pm 0.22$) mK. **See Fig. A5**.

--Cell Cu-M-3 (NRC, used in K2.3 to K2.5) $T_{\text{Cu-M-3}} - T_{\text{F10}} = +0.098 \text{ mK}.$ --Cell O-2 (NMIJ, used in K2.5). Differences $T_{\text{NMIJ,O-2}} - T_{\text{INRiM, Ec102}} = 0.019 \text{ mK}$ and $T_{\text{NMIJ,O-2}} - T_{\text{INRIM, Ec102}} = 0.019 \text{ mK}$ and $T_{\text{NMIJ,O-2}} - T_{\text{INRIM, Ec102}} = 0.019 \text{ mK}$ and $T_{\text{NMIJ,O-2}} - T_{\text{INRIM, Ec102}} = 0.019 \text{ mK}$ and $T_{\text{NMIJ,O-2}} - T_{\text{INRIM, Ec102}} = 0.019 \text{ mK}$ and $T_{\text{NMIJ,O-2}} - T_{\text{INRIM, Ec102}} = 0.019 \text{ mK}$ and $T_{\text{NMIJ,O-2}} - T_{\text{INRIM, Ec102}} = 0.019 \text{ mK}$ and $T_{\text{NMIJ,O-2}} - T_{\text{INRIM, Ec102}} = 0.019 \text{ mK}$ and $T_{\text{NMIJ,O-2}} - T_{\text{INRIM, Ec102}} = 0.019 \text{ mK}$ and $T_{\text{NMIJ,O-2}} - T_{\text{INRIM, Ec102}} = 0.019 \text{ mK}$ and $T_{\text{NMIJ,O-2}} - T_{\text{INRIM, Ec102}} = 0.019 \text{ mK}$ and $T_{\text{NMIJ,O-2}} - T_{\text{INRIM, Ec102}} = 0.019 \text{ mK}$ and $T_{\text{NMIJ,O-2}} - T_{\text{INRIM, Ec102}} = 0.019 \text{ mK}$ and $T_{\text{NMIJ,O-2}} - T_{\text{INRIM, Ec102}} = 0.019 \text{ mK}$ and $T_{\text{NMIJ,O-2}} - T_{\text{INRIM, Ec102}} = 0.019 \text{ mK}$ and $T_{\text{NMIJ,O-2}} - T_{\text{INRIM, Ec102}} = 0.019 \text{ mK}$ and $T_{\text{NMIJ,O-2}} - T_{\text{INRIM, Ec102}} = 0.019 \text{ mK}$ and $T_{\text{NMIJ,O-2}} - T_{\text{INRIM, Ec102}} = 0.019 \text{ mK}$ and $T_{\text{NMIJ,O-2}} - T_{\text{INRIM, Ec102}} = 0.019 \text{ mK}$ and $T_{\text{NMIJ,O-2}} - T_{\text{INRIM, Ec102}} = 0.019 \text{ mK}$ and $T_{\text{NMIJ,O-2}} - T_{\text{INRIM, Ec102}} = 0.019 \text{ mK}$ and $T_{\text{INMIJ,O-2}} - T_{\text{INRIM, Ec102}} = 0.019 \text{ mK}$ and $T_{\text{INMIJ,O-2}} - T_{\text{INRIM, Ec102}} = 0.019 \text{ mK}$

 $T_{\rm NRC,Cu-M-3} = 0.212 \text{ mK}.$

For anomalies see Section 9.

6.3 Comparisons during Project MULTICELLS (ITS-90, R₀ @ 273.16 K)

6.3.1 IMGC Cells

Eb1O2— (INTIBS Report 5, Nov 2001, Multicell Report AA-INTIBS) Reference Thermometer LN 1866336: **54.358 655 K** (ΔT (ITS-90) = +0.255 mK)

Eb102— (NMi-VSL Report Final, Multicell Report Z-NMi) Thermometer LN1820627: 2.343 1245 Ω

(INTIBS Report 5, 2001; Multicell Report AA) Thermometer LN1820627: **54.358 66 K Ec1O2**— (INTIBS, March 2002) Thermometer LN 1866336, *calibrated on thermometer* 2O2: **54.358 51 K** (ΔT (ITS-90) = +0.11 mK). (INTIBS Report 6, Oct 2002, Multicell Report AM-INTIBS) Thermometer LN 1866336: **54.358 51 K** (ΔT (ITS-90) = +0.11 mK.

e) Comparison INRiM – LNE-CNAM (2019)

Ec1O2 (INRiM) – **O2-01/1** (LNE-CNAM). Thermometer Rosemount 5435 calibrated on both cells: $+(0.23 \pm 0.25)$ mK. [Imbraguglio *et al.*, 2020]

6.3.2 Non-IMGC Cells (ITS-90, R₀ @ 273.16 K)

Multicell cell BNM-CNAM, **Cell O2-02/1** (VSL Report 5, MULTICELL Report AK, 2002) thermometer LN 1820627, *R* = **2.343 107** Ω. Same thermometer in K2.3, measurements @ VSL ITS-90 scale: $R_0 = 25.543765 \Omega$, W(tpO2) = 0.091730333, $R(tpO2) = 2.343138 \Omega$, $\Delta R_{O2-02/1} = -31 \mu \Omega$, $\Delta T_{O2-02/1} = -0.31 \text{ mK}$.

Measurements @ NRC **cell Cu-M-3**: $R_0 = 25.543766 \Omega$, W(tpO2) = 0.091729674, $R(tpO2) = 2.343121 \Omega$, $\Delta R_{O2-02/1} = -14 \mu \Omega$, $T_{O2-02/1} - T_{Cu-M-3} = -0.14$ mK. Finally, $(T_{VSL(BNM)} - T_{NRC(K2)})_{tpO2} = +0.27$ mK.

f) Other internal comparisons at IMGC/INRiM (ITS-90, R₀ @ 273.16 K)

14O2— (cell IMGC batch 5, measurement 1999-12-20) Thermometer LN 1722205: **2.341 3049** Ω. (**K2**) 2.341 2896 Ω, T - T(K2) = +0.15 mK.

E2O2— (cell IMGC batch 7, measurement 2001-02-24) Thermometer LN 1722205: **2.341 308** Ω ; (**K2**) 2.341 2896 Ω, T - T(K2) = +0.19 mK.

Ec1O2—(cell IMGC batch 9) IMGC measurement for **K2.2**: thermometer LN 1857277: 2006-06-30: **2.346 6044** Ω (ΔT (ITS-90) = +0.078 mK); 06-27: **2.346 5994** Ω (ΔT (ITS-90) = +0.16 mK); 06-24: **2.346 5966** Ω (ΔT (ITS-90) = +0.18 mK).

Ec26O2— (cell INRiM batch 10) 2015 comparison of thermometers 1860951 and 1857277, both calibrated on **1O2** at intercomparison **K2**: INRiM (1860951) – 1O2 = -0.102 mK, -0.090 mK, -0.099 mK, average -0.097 mK ; INRiM (1857277) – 1O2 = -0.050 mK, -0.042 mK, -0.049 mK, average – 0.047 mK.

7. Overall consistency of IMGC/INRiM reference cells

7.1 Consistency of Cell #0 with cell 1O2

--Cell #0 – 1O2 = (-0.2 \pm 0.15) mK for IMGC thermometer REC 646 (@ < 1980).

7.2 Consistency of cell 102 (202, 302) with cell Ec102

—Cell O2-2 (NPL, ref in NPL Inter-comparison) differed from 1O2 by (+0.090 \pm 0.035) mK, corresponding to $x(Ar) = 8 \cdot 10^{-6}$.

— Cell 14O2 was measured at IMGC and the difference with 1O2 found to be (+0.060 ± 0.030) mK, i.e. $x(Ar) = 5 \cdot 10^{-6}$, compatible with the gas assay

—Cell E2O2 (mod. a, year 2000), measured at IMGC and the difference with 1O2 found to be (+0.085 \pm 0.03) mK, i.e. $x(Ar) = 7 \cdot 10^{-6}$, compatible with the gas assay. It also participated in the comparison IntInt and was found to differ from the KCRV (differing from 1O2 by -0.01 mK) by (-0.12 \pm 0.15) mK

---(INTiBS Report 6, Oct 2002, Multicell Report AM-INTiBS) Thermometer LN 1866336: 54.358 51 K (ΔT (ITS-90) = +**0.11** mK

— K2.4: Cell 2O2 (batch #1), loaned to INTiBS, was found to have a difference with respect to the KCRV of K2.4 (where 2O2 (INTiBS) – F10 (NRC) = -0.06 mK) of ($+0.35 \pm 0.34$) mK (*but see Section 8 for a possible problem in K2.4*).

7.3 Consistency with 1O2 of IMGC/INRiM cells using samples from gas Messer1 ($x(Ar) = 4 \cdot 10^{-6}$)

#9— 13O2: same batch of 14O2 #10— E1O2: same batch of E2O2

#23, #24— 14O2, 15O2: (+**0.060** ± 0.030) mK

#25 - #27— E2O2-E4O2: (+**0.19** ± 0.050) mK

#28— Eb1O2: +0.15 mK with respect to cell #30

- #29— Eb2O2: (+**0.060** ± 0.030) mK
- #30— through **Ec1O2**: *see above*

#31, #32— Ec26O2, Ec27O2: (+**0.040** ± 0.030) mK.

8. A few misprints and possible inconsistency issues @ TPO2 estimated in previous documents (also after Rourke [Fellmuth and Rourke, 2021]

a) NPL Comparison (Note: In this comparison $R_0 = R @ 273.15$ K, the ice point)

In the Metrologia paper of the comparison [Ward and Compton, 1979], one finds, in Section VI: "VI. Analysis of Results

a) Comparison of R, and Fixed Point Values

The differences between the R, as measured in the originating laboratory and the mean R, measured at

NPL are given in column 3 of Table 3 for each thermometer in the form $(R_{lab} - R_{NPL}) \dots$, while in the heading of Table 3 it is indicated:

"Differences between the measurements of the originating laboratory and those of NPL. In the fixed point comparisons, a positive entry indicates the **NPL realization is hotter**",

which has the opposite meaning.

But, in the footnote: "The table can also be considered as representing (T_{Lab} - T_{NPL}) at the NPL fixed points, since if the fixed point of a laboratory IS "hotter" than that of NPL, a thermometer calibrated at that fixed point will indicate a temperature below the defined temperature when at the NPL fixed point."

The former has been taken here as the correct one.

In Table 1 of [Ward and Compton 1979], for the PRMI thermometer 45, the value $R_0 = 25.66718 \Omega$ is incorrect, the correct one being $R_0 = 25.67918 \Omega$, as in [Pavese, 1981].

	– 0.635 mK	+ 0.535 mK (diff. 1.18 mK)
$T_{\rm NRC, K2}$ (F10) $-T$	'IMGC,last(102):	
	2.346 5359	2.344 5914
NRC(K2)	0.091 842 149	0.091 813 149
	(-0.15 μΩ)	(+0.35 μΩ)
R =	2.346 5994	2.344 5379
	0.091 844 634	0.091 811 054
Recomputed her	re ab initio	
$W(TPO2)_{K2} =$	0.091 844 64	0.091 811 04
	$(R_0 = 25.549 \ 662 \ \Omega)$	$R_0 = 25.536\ 5537\ \Omega)$
	<u>LN 1857277</u>	<u>LN 1860951</u>
Table 5.5 , (IMC	GC 1O2 (corrected from 8O2))	
b) CCT-K2 Rep	<u>ort</u>	

What is the meaning?

One has to consider that the results from the laboratories are taken *at* the fixed point temperature (54.3584 K @ IPTS-68), while the NRC measurements were performed *near* the nominal TPO2 temperature value.

In fact, *from CCT-K2draftA.P2* (information not available in the K2 Final Report)

KCRV(K)	Group A	Group B	
	54.357 91 (-0.49)	54.359 05 (+0.65)	(diff. 1.14 mK)

They are different.

Let us consider the above calculations leading to the corresponding temperature values.

[KCRV(K2) - IN]	MGC(K2)] (mK)	
	+0.200	+0.167
[KCRV(K2) - N	RC(K2)] (mK)	
	-0.180	-0.240
T(IMGC) K	54.357 71 (-0.69)	54.358 88 (+0.48) (diff. 1.17 mK).
T(NRC) K	54.357 99	54.358 81
and, from the he	re recomputed data	
(mK)	(+0.200+0.001) = +0.201	(+0.167 - 0.004) = +0.163
T(IMGC) K	54.357 51 (-0.79 mK)	54.358 88 (+0.48) (diff. 1.17 mK)
Thus		
T(IMGC) K	54.357 51 (-0.79 mK)	54.358 88 (+0.48) (diff. 1.17 mK)

The reported temperature differences for both thermometers fully originate from the different values of the two *T*(KCRV). As said above, the NRC *R* values are not comparable with the *R* values of the Labs. If that is taken into consideration, the results are consistent with the IMGC measurements within u < 0.10 mK.

T(NRC) K	54.357 99	54.358 81
[NRC(K2) - IN]	IGC(K2)] (mK)	0.04
	+0.28	+0.04
Bilateral equiv	alence (K2 Table B.5)	
[NRC(K2) - IM]	IGC(K2)] (mK)	
	-0,38	-0.40

c) CCT-K2.5 Report

Directly from the meltings at INRiM it is possible to obtain the value for the two INRiM thermometers used in the IMGC/INRiM cell **Ec1O2**.

	<u>LN 1857277</u>	LN 1860951
W(TPO2) =	0.091 844 639	0.091 810 803
R(Ec1O2) =	2.34659939	2.344531338

In the CCT-K2.5 Report, only data for thermometer LN 1860951 are fully reported. It was provided by INRiM to NRC with the value: $W(TPO2) = 0.091\ 810\ 533 incorrect;$ the *correct* one (for the right thermometer) is 0.091\ 810\ 803\ (+68.9\ \mu K)

The CCT K2.5 does not report any direct new comparison NRC – IMGC/INRiM, but only a T(INRiM,Ec1O2) - T(NMIJ). However, in K2.5, from T(NMIJ) - T(NRC) = +0.21 K (mean) and T(INRiM) - T NMIJ) = -0.019 K, for the same NMIJ cell, one gets T(INRiM) - T(NRC) = +0.19 K. Also the difference $T_{\text{INRiM,Ec1O2}} - T_{KCRV(\text{K2})\text{F10}}$ for the same thermometer is reported in the K2.5 Report, Table 8 Group B, (+0.58 ± 0.28) mK, where the KCRV is the same as in K2. The recomputation in K2.4 leads to $T_{\text{INRiM,Ec1O2}} - T_{KCRV(\text{K2})\text{F10}} = -0.451$ mK (note the different IMGC cell, now an INRiM one).

From this and from $T_{\text{IMGC},102(\text{K2})}$ - $T_{\text{KCRV}(\text{K2})} = -0.167$ mK in the above a), one gets $T_{\text{INRiM},\text{Ec1O2}}$ - $T_{\text{IMGC},102}$ = -0.284 mK.

This value is inconsistent with K2.5 (using $W(IMGC_{K2}) = 0,091811040) = -0.060$ mK for the same thermometer. this latter being consistent, but only within the uncertainty, with the (INRiM only) K2.2 one, +0.024 mK and the MULTICELLS Report AM, INTIBS, +0.11 mK.

As to NMIJ, the difference $T_{\text{NMIJ,O-2}} - T_{\text{NRC,Cu-M-3}} = +0.212 \text{ mK}$ (mean) is *incorrect* (the correct being +0.243 mK) and the difference $T_{\text{INRiM,Ec1O2}} - T_{\text{NRC,Cu-M-3}} = +0.019 \text{ mK}$ is consisten with the correct one +0.050 mK. Thus the difference $T_{\text{INRiM,Ec1O2}} - T_{\text{NRC,Cu-M-3}} = 0.050 - 0.243 \text{ becomes} -193 \text{ mK}$. Since the NRC cell Cu-M-3 is used, providing a TPO2 higher by +0.098 mK than the NRC cell F10 used in the CCT-K2, the difference $T_{\text{INRiM,Ec1O2}} - T_{\text{NRC,F10}} = (-0.193+0.098) \text{ mK} = +0.391 \text{ mK}$, instead of -0.40 mK in K2, and with a different sign (see above <u>b) CCT-K2 Report</u>).

9. Conclusions

The chain of IMGC/INRiM cells shows a very good consistency with each other within 0.10 mK (corresponding to a Ar content of $x(Ar) \approx 8 \, 10^{-6}$). The assumption, from the above consistency, that cell 1O2 argon content is almost zero is compatible with the Ar impurity experimentally found—from a deep analysis published about the behaviour of oxygen at its triple point, in the gas Messer 1: $x(Ar) = 4 \, 10^{-6}$. Consequently, also their differences with respect to other cells depend basically on the uncertainty of the measurements. With the above consistency, the results of the most recent STAR comparison would be more likely to be the ones reported in column 9 of Table 2, by using cell 1O2 as reference. This would imply that PTB reference cell O2-4 contains about 17 10^{-6} , instead of 1 10^{-6} , of Ar. That would also mean that other non-IMGC/INRiM cells show a larger Ar contamination, i.e., higher T_{TPO2} then assumed so far to have. This is suggested, e.g., in Table A5 from the results of the K2 comparison, were cell IMGC 1O2 was the lowest, consistent with the above assumption concerning the Ar content of cell 1O2. On the other hand, a resulting argon content of 15 ppm of cell O2-M2-1 (NBS/NIST) is questionable because the gas used for filling this cell was produced at NBS from KMnO4.

In addition, during the above analysis, a small number of typos and inconsistencies were found in previously published documents, from IMGC/INRiM, NPL, and NRC. In particular, while the differences between IMGC/INRiM cells with NRC cells were always found consistent, the differences between these cells with the KCRV(K2) started to show increasing dubious high values since comparison K2.3 (edivence here reported only in Table A8 of the Appendix), though within the quite high uncertainty associated with those late measurements. In Table A8 anomalies in some of the results of the CCT.K2 are evident.

We guess that an inconsistent sign might be due to a misunderstanding in the application the the NPL Note reported in 8.a) above.

In conclusion, it looks like, in general, the realisation of the triple point of pure oxygen is affected by a higher argon contamination than expected, which would make some of the national realizations too high by 0.3–0.5 mK, today a significant difference, considering the present state-of-the-art realization uncertainty (0.05–0.15 mK). Consequently, the technique of measuring also the α - β transition as a check and for possible correction for the effective Ar contamination looks like an effective precaution for the future.

Acknowledgements

The Authors are grateful for the accurate and useful comments and suggestions obtained from Bernd Fellmuth and Patrick Rourke [Fellmuth and Rourke, 2021] and from Aleksandra Kowal [Kowal, 2021]. Some useful INTiBS information became unavailable with the sudden death of Leszek Lipinski in 2019.

References

[Ancsin, 1970] J. Ancsin, The Triple Point of Oxygen and its Change by Noble Gas Impurities, Metrologia 6 (1970) 53

[Ancsin, 1973] J. Ancsin, Dew Points, Boiling Points and Triple Points of "Pure" and Impure Oxygen, Metrologia 9 (1973) 26

[Ancsin 1978] J. Ancsin, Intercomparison of Triple Points of Argon and Oxygen of INM, IMGC and NRC, Metrologia 14 (1978) 79

[De Paz *et al.*, 1974] M. De Paz, F. Pavese, G. Cagna, Analyse de traces d'impurités dans l'oxygéne ultrapur par spectrométrie de masse, dans la réalization du point triple de l'oxygène à 54.361 K, Le Vide, Suppl. 169 (1974) 265–71.

[Fellmuth *et al.*, 2005] B. Fellmuth, L. Wolber, Y. Hermier, F. Pavese, P.P.M. Steur, I. Peroni, A. Szmyrka-Grzebyk, L. Lipinski, W.L. Tew, T. Nakano, H. Sakurai, O. Tamura, D. Head, K.D. Hill and A.G. Steele, Isotopic and other influences on the realization of the triple point of hydrogen, Metrologia 42 (2005), 171-193.

[Fellmuth *et al.*, 2012] B. Fellmuth, L. Wolber, D. Head, Y. Hermier, K.D. Hill, T. Nakano, F. Pavese, A. Peruzzi, V. Shkraba, A.G. Steele, P.P.M. Steur, A. Szmyrka-Grzebyk, W.L. Tew, L. Wang, D.R. White: Investigation of low-temperature fixed points by an international star intercomparison of sealed-triple point cells, Metrologia 49 (2012) 257-265

[Fellmuth and Rourke, 2021] Private Communications.

[Furukawa, 1986] Furukawa G.T., The triple point of oxygen in sealed transportable cells, J. Res. NBS 1986 91, 255–275

[Hill *et al.*, 2005] K.D. Hill, A.G. Steele, Y.A. Dedikov, V.T. Shkraba, CCT-K2.1: NRC/VNIIFTRI bilateral comparison of capsule-type standard platinum resistance thermometers from 13.8 K to 273.16 K, Metrologia 2005 42, Technical Supplement 03001

[Hill *et al.*, 2012] K.D. Hill, A. Peruzzi, R. Bosma, CCT-K2.3: NRC/NMi-VSL bilateral comparison of capsule-type standard platinum resistance thermometers from 13.8 K to 273.16 K, Final Report 2012, Metrologia 49 Tech.Suppl. 03004

[Hill *et al.*, 2012b] K.D. Hill, A. Szmyrka-Grzebyk, L. Lipiński, Y. Hermier, L. Pitre, F. Sparasci, CCT-K2.4: NRC/INTiBS/LNE-Cnam trilateral comparison of capsule-type standard platinum resistance thermometers from 13.8 K to 273.16 K, Final Report, Metrologia 2012 49 Tech.Suppl. 03004

[Hill *et al.*, 2015] K.D. Hill, T. Nakano, P. Steur, CCT-K2.5: NRC/NMIJ/INRiM comparison of capsule-type standard platinum resistance thermometers from 13.8 K to 273.16 K, Final Report, Metrologia 2015 52 Tech.Suppl. 03003

[Imbraguglio *et al.*, 2020] D. Imbraguglio, P.P.M Steur, F. Sparasci, Comparison of ITS-90 realisations from 13 K to 273 K between LNE-CNAM and INRiM, Measurement 166 (2020) 108225, https://doi.org/10.1016/j.measurement.2020.108225

[INTiBS, 2001] INTiBS-PAN: "Investigation of the IMGC multicell at INTiBS. Report No 5", 20 November 2001.EU Project "MULTICELLS".

[Kang *et al.*, 1996] K. H. Kang, K. H. Kim, J.-J. Kim and C. Rhee, Phenomenological interpretation of impurity redistribution effects on the freezing curve of oxygen, Metrologia 1996, 33, 421-425

[Kang *et al.*, 2001] Kee-Hoon Kang, Chang-Ho Song, Yong-Gyoo Kim, Device and method for measuring argon impurity by utilizing the triple point and the β - γ transition temperatures of oxygen, US Patent 6,324,895 B1, 2001

[Karlsson, 1975] B.M. Karlsson, Determination of argon and nitrogen in oxygen by gas chromatography, Chromatografia 8 (1975) 155

[Kemp et al., 1976] R.C. Kemp, W.R.G. Kemp, J.A. Cowan, The boiling points and triple points of oxygen and argon, Metrologia 12 (1976) 93

[Kowal, 2021] Aleksandra Kowal, private communication.

[B. Kołodziej et al,] B. Kołodziej, A. Kowal, L. Lipi nski. H. Manuszkiewicz, A. Szmyrka-Grzebyk, Comparison of the Argon Triple-Point Temperature in Small Cells of Different Construction, Int J Thermophys (2017) 38:94 DOI 10.1007/s10765-017-2225-7

[Muijlwijk, 1968] R. Muijlwijk , Vapour pressures of oxygen and platinum resistance thermometry below 100 K, KOL Thesis, Leiden 1968

[Nasso *et al.*, 2009] C. Nasso, G. Bissolotti, F. Turra, M. Sega, E. Amico di Meane, F. Rolle, La taratura dei gas: determinazione della purezza, (in Italian) Proc. VI Congress "Metrologia & Qualità", April 7, 2009, Turin, 1–4

[Pavese, 1970] Confronti di scale termodunamiche e pratiche, II) Campo da 13.81 K a 90.188 K, IMGC Int. Rep. S/71 (in Italian]

[Pavese, 1975] F. Pavese, Realization of the IPTS68 between 54.361 K and 273.15 K and the triple points of oxygen and argon, Inst. Phys. Conf. Series (GB) 26 (1975) 70-79.

[Pavese *et al.*, 1976] F. Pavese, G. Cagna, D. Ferri, Miniature sealed cells as an easy-to-use temperature calibration device and a precision thermostat for cryogenic temperatures, Proc. 6th Int.Cryo. Engin.Conf. (ICEC6), IPC Science and Tech. Press, Guildford (1976) 205-07.

[Pavese, 1978] F. Pavese: "The triple point of argon and oxygen", Metrologia 14 (1978) 93-103; full Report: F.Pavese, IMGC Int. Report S/161 (in English) (1978).

[Pavese, 1981] F. Pavese, Intercomparison of the IPTS68 realizations made at PRMI (USSR) and IMGC (Italy) by means of USSR-made cryogenic platinum resistance thermometers, Proc. Conf. on Temperature Measurement in Science and Industry, Dum Techniki CSVTS, Karlovy Vary (1981) 25-31.

[Pavese, 1983] F. Pavese, On the use of first-generation sealed cells in an international inter-comparison of triple point temperature of gases, Temperature, Its Measurement and Control in Science and Industry, J.F.Schooley ed., Amer.Inst. of Phys., New York 5 (1983) 209-13.

[Pavese and Ferri, 1983] F. Pavese, D. Ferri, Ten years of research on sealed cells for phase transition studies of gases at IMGC, Temperature, Its Measurement and Control in Science and Industry, J.F.Schooley ed., Amer.Inst. of Phys., New York 5 (1983) 217-27.

[Pavese, 1984] F. Pavese, Final Report of the International Intercomparison of fixed points by means of sealed cells: 13.81 K to 90.686 K, Monograph 84/4 of Bureau International des Poids et Mesures, BIPM Sèvres (1984), pp.219.

[Pavese *et al.*, 1984] F. Pavese, J. Ancsin, D.N. Astrov, J. Bonhoure, G. Bonnier, G.T. Furukawa, R.C. Kemp, H. Maas, R.L. Rusby, H. Sakurai, Ling Shankang, An International Intercomparison of fixed points by means of sealed cells in the range 13.81 K to 90.686 K, Metrologia 20 (1984), 127-144.

[Pavese *et al.*, 1988] F. Pavese, D. Ferri, D. Giraudi, Evidence of unreliability of factory analyses of argon impurity in oxygen, Adv.Cryo.Engin, <u>33</u> (1988) 1039-1043.

[Pavese, 1994] F. Pavese, Gas-based thermometry and thermodynamics below 273.16 K at IMGC, IMEKO World Congress, Book dedicated to A. Bray (Barbato Ed.), 1994, 132-37

[Pavese, 2003] F. Pavese, B. Fellmuth, D. Head, Y. Hermier, A. Peruzzi, A. Szmyrka Grzebyk, L. Zanin, MULTICELLS: A European Project on Cryogenic Temperature Fixed Points in Sealed Cells, Temperature, Its Measurement and Control in Science and Industry, D. Ripple ed., Amer.Inst.of Phys., New York A, 8 (2003), 161-166.

[Pavese, 2006] F. Pavese, Lessons learnt in 50 years of cryogenic thermometry, Chapter in "Cryogenic Engineering: Fifty Years of Progress", Timmerhaus and Ross eds., Springer, New York, 2006, ch.10, pp. 179-221.

[Pavese, 2009] F. Pavese, Critical review of information relevant to the correction of the effect of chemical impurities in gases used for the realization of ITS-90 fixed points, Metrologia, 46 (2009) 47-61 IF 1,780

[Pavese and Steur, 2019] F. Pavese, P.P.M. Steur, 50 years of thermal metrology in cryogenics (1967–2008) at IMGC-CNR/INRiM, TEMPMEKO 2019

[Razhba et al., 1973] Razhba, Ya.E., Belyansky, L.B., Orlova, M.P., Sharevskaya, D.I.: Meas. Tech. 16,390 (1973).

[Roboz, 1967] J. Roboz, Mass spectrometric determination of trace impurities in oxygen, Analytical Chemistry 39 (1967) 175–178

[Shimosaka, 2017] T. Shimosaka, Development of primary standard gas mixtures containing 10

lmol/mol oxygen in nitrogen with verification by a two-oven GC-TCD system for effective separation of oxygen from argon in presence of plenty of nitrogen, Accred. Qual. Assur. 22 (5) (2017) 281–289.

[Steele *et al.*, 2002] Steele A.G., Fellmuth B., Head D.I., Hermier Y., Kang K.H., Steur P.P.M., Tew W.L., CCT-K2: key comparison of capsule-type standard platinum resistance thermometers from 13.8 K to 273.16 K, Metrologia 39 (2002) 551–571.

[Steur, 1999] P.P.M. Steur, Correction file sent to NRC.

[Steur and Pavese, 2014] P.P.M. Steur and F. Pavese, 1967-2017, 50 anni di Metrologia Termica in Criogenia IMGC/INRiM (50 years of thermal metrology in cryogenics at IMGC/INRiM 1967-2017). Internal Report INRiM (2014) n.20, (partially in Italian), pp 100.

[Steur *et al.*, 2017] P.P.M. Steur, Inseok Yang, F. Pavese, Evidence for argon content in pure oxygen from thermal data, IJOT 38(2) 2017 20–32. DOI: 10.1007/s10765-016-2160-z

[Steur and Pavese, 2019] P.P.M. Steur and F. Pavese, 2018-2019: 50 anni di Metrologia Termica in Criogenia IMGC/INRiM (50 years of thermal metrology in cryogenics at IMGC/INRiM 1967-2019). Internal Report INRiM (2014) 2019 update (partially in Italian), pp 16

[Steur *et al.*, 2020] P.P.M. Steur, Inseok Yang, F. Pavese, The effect of argon content on the β - γ transition of oxygen, Int. J. Thermophysics IJOT 41 (2020) 7–13, https://doi.org/10.1007/s10765-019-2582-5

[Steur *et al.*, 2020b] P.P.M. Steur, Inseok Yang, D. Giraudi, F. Pavese, Amount concentration of Ar in O₂ obtained by means of thermal analysis of certified mixtures at the α - β transition of O₂, and preliminary confirmation of a new finding, J. Chem. Thermodynamics 141 (2020) 7, https://doi.org/10.1016/j.jct.2019.105934

[Yamaguchi and Araki, 1967] N. Yamaguchi, S. Araki, Mass spectrometric analysis of impurities in oxygen (in Japanese), Bunseki Kagaku 16 (1967) 348–354

[Yang *et al.*, 2017] Inseok Yang, Jin Bok Lee, Dong Min Moon, Jin Seog Kim, Preparation of primary reference material of argon in oxygen by the gravimetric method for application to thermometry, Metrologia 54 (2017) 184–192

[Yang *et al.*, 2014] I. Yang, T. Nakano, O. Tamura, Y.-G. Kim, Comparison of realizations of the triple point of oxygen between KRISS and NMIJ, TEMPMEKO 2014, unpublished

[Ward and Compton, 1979] S.D. Ward and J.P. Compton, Intercomparison of Platinum Resistance Thermometers and T_{68} Calibrations, Metrologia 15 (1979) 31-46

APPENDIX Some data from relevant publications

References in Tables are the ones in the original publication)

TABLE A1. [Pavese, 2009]

Effect on T_{ip} per volume fraction of various gaseous chemical impurities on the indicated pure substances (in **bold** the principal s): initial liquidus line slopes $s_{\rm L} = dT_{iiq}/dc_i$ (in parentheses the initial solidus line slopes $s_{\rm S}$) and uncertainties $u(dT_{iq}/dc_i)$.

	Effect on T_{tp} per volume fraction/µK ppma ⁻¹									
Chemical impurity	e-hydrogen	Neon	Oxygen	Argon						
He	-11 ± 2 (s _s n.a.)	None [18]	+1.5 ± 0.5 ⁴ (s _s n.a.)	n.a. ^b						
H_2	_	-7 ± 3° (s _s n.a.)	n.a. ^b	None [35]						
Ne	-2±0.5 (s _s n.a.)	_	-1 ± 0.5 ^a (s _s n.a.)	None [35]						
O ₂	None ^d	n.a. ^b	_	-22 ± 3 ^a (-35) ^e						
N ₂	None ^d	$-8 \pm 2^{a,c}$ (-21) ^e	-22 ± 3 ^a (-35) ^e	-22 ± 3^{n} (-50) ^e						
Ar	n.a. ^b	None [18]	$+12 \pm 3^{a}$ ($s_{t} = s_{s}$)	_						
CO		None [18]	n.a. ^b	-24 ± 4^{n} (-50)						
F ₂			n.a. ^b	-10 ± 2 ('much larger')						
CH₄			< – 30 (s _s n.a.)	-25 ± 5 ^a (-80)						
Kr			-5±1 ¹ (-9) ^e	$+5 \pm 3^{n}$ $(s_{1} = s_{2})$						
Xe			-8±2 (-30) ^e	-6 ± 2 (s _s n.a.)						

^a Estimated only from thermal metrology studies.

^b n.a. = no data available.

 $^{\rm c}$ Both H_2 and N_2 impurities can easily be removed today to much less than 1 ppm with the use of zirconium-getter based commercial filters. ^d Estimated from solubility data.

 $^{\rm e}$ $s_{\rm S}$ provided with no uncertainty estimate, to qualitatively evaluate from $(s_{\rm L}-s_{\rm S})$ the value of k_0 .

TABLE A2. [Pavese, 1978]

Table 1.	Impurity	analysis	for	oxygen	and	argon
Oxygen						

Sample															
Impurity (ppm)	SIO-1°			SIO-2			SIO—3			LIF4		AP&C—5			
	Feb 74 LAB 3	Feb 74 LAB 3 ^a	Dec 74 LAB 2	Dec 73 LAB 1	Dec 74 LAB 2	May 75 LAB 4	Nov 73 LAB 1	Dec 74 LAB 2	Nov 75 LAB 2°	Nov 69 LAB 5	Dec 74 LAB 2 ^t	1973 LAB 6	Oct 74 NPL	Jul 75 IMGC	Nov 75 LAB 2
Ν.	11 + 2	14 +4	12	< 10	1.1	≤ 2	< 5	1.0	13	5	4300	8	5	_	5.3
Ar	<2	2 ± 1		< 8	_		<12	_	_	<1	70 ± 50	10	5	_	
CO,	11 ± 2	9 ± 2	1	none	1.6	≤20	< 1	2.9	3.4	<5		< 0.5	_	-	1
co			< 0.5		≼0.5	≤10		≤0.5		<1	-	<1	_		_
Н,О	1 ± 1	<1		< 5	<1.5	_	< 3	1.5	_	<2	10.5	0.15	_		
н,	4 ± 2	2 ± 1			_	<10	_	_		_				_	
Hydroc. (as CH₄)	none	none		< 2	_	< 1		≼0.5	_	< 0.5		0.5	_	_	
Other ^d noble	none	none	-	< 2	_	< 2	3		-	<1	-	10(2)	5 ^b	<2 ^b	

^a Sample stored in our sampling cylinder after 4-months use
^b Krypton
^c The number indicate the cylinder. SIO = SIO-Air Liquid; Lif = Lif-O-Gen Co.; AP&C = Air Products and Chem. Co.
^d Note that some manufacturers give krypton figures of 10-15 ppm (see also [1, 3]); they are likely to be sensitivity limits, therefore not to be used for corrections

^e Cylinder almost empty ^f It also contained 1.4% of He

			$\Delta W_{4.2K} \times 10^8$	Fixed point differences (mK)									
Laboratory	Thermometer No.	ΔR _e (μΩ)		e-H ₂ t. pt.	e-H ₂ "17K"	e-H ₂ b. pt.	Ne b. pt.	O2 t. pt.	O ₂ c. pt.	H ₂ O b. pt.			
ASMW	207278	-40	78	1.3	-1.2	-2.0	-6.3	-2.1	-5.8	0.8			
	217990	-140	19							-3.5			
	217997	-260	55							-0.8			
IMGC	646	0		-0.3	1.7	-0.4	2.0	1.0 -0.2	3.8	1.0			
INM	1812283	-200											
KOL	T4	20	9	0.5	0.3	0.6	1.6	-0.1	-0.3	-2.4			
	LN43	0	-6	0.3	-0.1	0.6	1.3	0.5	-0.2	2.4			
NBS	1812279	60		-4.0	-1.4	-1.7	1.2	0.6	3.1	1.8			
	1812282	-50		-4.1	-1.2	-1.7	1.2	0.5	3.1	1.8			
	1812284	-60		-3.9	-1.4	-1.8	1.2	0.6	3.0	1.4			
NML	1705628	20		-0.3	0.1	-0.6	1.6	0.1	0.3	1.2			
	1731676	0	20	-0.3	0.1	-0.6	1.6	0.1	0.3	3.0			
NRC	1158062	90	-10	-1.8	2.5	-1.1	1.2	0.2	0.6	0.5			
	1158066	-10	70	5.4	6.5	1.1	2.3	0.7	1.2	-0.9			
				2.5	1.9	0.5							
	1722203	0	0	-1.0	2.7	-0.9	1.3	0.4	0.7	-0.5			
NRLM	6601	10	190	1.9	-2.7	0.8	0.7	-0.1	-0.1	-1.3			
	6803									-3.1			
PRMI	16	-240		1.2	0	0.3	2.1	0.1	1.5	0.5			
	45	-230		1.1	0.2	0.3	2.1	0.3	1.3	2.5			
РТВ	170138	-150			-3.7	-2.8	-0.1	-0.6	-1.9	-0.8			
	188682	-40		-0.6	-0.5	-0.6	0.9	-0.3	-1.7	-0.5			
	1778842	0	45							-0.3			

TABLE A3. (NPL – Lab) (Table 3 in [Ward and Compton, 1979])

TABLE A4. Summary of the K2.1–5 results (as elaborated in the present Report).

Red-evidenced data: inconsistent (see text).

OXYGEN																			201	2	201	6
							K2								K2	.1	K2	.3	K2	.4	K2.	.5
К2	BNM	<i>u</i> /mK	IMGC 1 02 #		KRISS		NBS/NIST	-	NPL		NRC F10		РТВ		VNIIFTRI		Nmi-VSL Eb2O2		INTIBS 202		NMIJ 0-2	
LabĞKCRV Lab Ğ NRC(K2)	-0,07 0,01	0,26 0,25	-0,2 -0,16 -0,38 -0,40	0,12 0,12	0,09 0,1	0,17 0,17	0,07 -0,05	0,1 0,12	0,02 0,06	0,18 0,15	0,18 0,24	0,22 0,22	0,18	0,23								
IMGC/INRIMĞLab	0,19 *		Ñ		0,28		0,15		0,2 **		Ğ0,05 ¦		0,36		0,05						-0,02	
K2.1 LabĞKCRV Lab Ğ NRC(K2)											F10				-0,13 0,34 0,64	0,33 0,32 0,32						
K2.3											Cu-M-3 ¤											
LabĞKCRV Lab Ğ NRC(K2)																	<mark>0,48</mark> 0,17	0,36 0,28				
K2.4	improved	d M-cell									Cu-M-3 ¤											
LabĞKCRV Lab Ğ NRC(K2)	<mark>0,36</mark> 0,05	0,34 0,33																	0,35 0,04	0,34 0,33		
K2.5			Ec1O2								Cu-M-3 ¤											
LabĞKCRV			0,49	0,57																	0,51 0,53	0,27 0,27
Lab Ğ NRC(K2) INRIMĞNMIJ			Ñ -0,019	0,08																	0,22 0,224	0,25 0,25
# 8O2 Ğ 1O2 = +0,48 mK	* Bonnier	private c	ommunication	n (CCT/7	6-32)		** NPL C	CT/76-4	1Ğ0,04 (ir	Metrolo	gia 76(77))		Ancsin,	Metrolog	gia 76(77)		¤Cu-M-3	Ğ F10 =	+0.098 mH	(NRC)		

TABLE A5. STAR comparison of cells [Fellmuth et al., 2005].

Cell No	Manufacturer	Owner	Model	Sealing	Gas purity	Gas source*
O200/2	INM	INM	M-cell SS body / Cu tube [9,23]	2000	5N5ª	Air Liquide
O202/1	INM	INM	M-cell SS/Cu [10]	2002	6N ^b	Air Liquide
102	INRIM	INTiBS	A SS/Cu / In seal [1, 11, 12, 23]	Sep 76	4N8°	SIO4
202	INRIM	INTiBS	A SS/Cu / In seal [1, 11, 12, 23]	Sep 76	4N8°	SIO4
902	INRIM	PTB	L SS/Cu [1, 11, 12, 23]	Oct 86	5N5 ^d	SIAD
1102	INRIM	MSL	Cbis SS/Cu [1, 11, 12, 23]	Oct 86	5N5 ^d	SIAD
1302	INRIM	VSL	C SS/Cu [1, 11, 12, 23]	Nov 99	5N5°	Messer Griesheim
E1O2	INRIM	РТВ	M-cell a SS/Cu [4, 13]	Nov 99	5N5°	Messer Griesheim
O2-M2-1-NIST	NIST	NIST	316LSS [15]	Feb 83		NBS (KMnO ₄)
O2-2-NPL	NPL	NPL	Wide SS/Cu/In seal [20]	Aug 95	4N8 ^f	Air Liquide
O2-F10-NRC	NRC	NRC	Cu / In seal [21]	Oct 85	4N8	Air Products
02-4	PTB	PTB	C Cu [22]	Mar 96	6N ^g	AGA
O2-MC-495	VNIIFTRI	VNIIFTRI	M-cell Cu tubes [1,23]	1995		
O2-MC-897	VNIIFTRI	РТВ	M-cell Cu tubes [1,23]	Dec 97	5N ^h	

* Identification of commercial equipment and materials in this paper does not imply recommendation or endorsement by PTB, nor does it imply that the equipment and materials identified are necessarily the best available for the purpose.

^a NIC: H₂, CO, CO₂ 0.1 ppm; N₂ 4 ppm; CH₄ 0.2 ppm; H₂O 1 ppm.

^b NIC: H₂, O₂, CO, CO₂, C_nH_m < 0.1 ppm; H₂O < 0.5 ppm.

 $^{\rm c}$ Analysis results: N_2 $\leqslant 14$ ppm; Ar <10 ppm; Kr + Xe <1 ppm; CO_2 0.4 ppm.

^d Analysis results: Ar 5 ppm; $N_2 < 0.5$ ppm. ^e Analysis results: N₂ < 5 ppm; Ar < 3 ppm; CH₄ < 0.1 ppm. ^f NIC: Ar < 8 ppm; Kr, Xe < 2 ppm; N₂ < 5 ppm; H₂O < 3 ppm; other 0.5 ppm.

^g Analysis results: Ar ≤ 1 ppm; N₂, H₂O ≤ 0.5 ppm; CO₂, C_nH_m ≤ 0.1 ppm. ^h Analysis results: Ar 0.06 ppm; N₂ 2.9 ppm; H₂O 6 ppm.

TABLE A6. STAR comparison of cells [Fellmuth et al., 2005].

Table 6. Differences $\Delta T_{LP} = T_{LP} - T_{Ref}$ between the liquidus-point temperatures of the investigated oxygen cells, T_{LP} , and that of the reference cell O_2 -4, T_{Ref} , together with their standard uncertainties $u(\Delta T_{\rm LP})$. The sources and purities of the gases are listed in table 2.

Cell No	Producer	$\Delta T_{\rm LP}/\mu { m K}$	$u(\Delta T_{\rm LP})/\mu {\rm K}$
O200/2	INM	-49	40
O202/1	INM	-165	36
102	INRIM	-199	35
202	INRIM	-101	35
902	INRIM	-58	36
1102	INRIM	-118	35
1302	INRIM	-16	36
E1O2	INRIM	5	36
O2-M2-1-NIST	NIST	-27	35
O2-2-NPL	NPL	-109	35
02-F10-NRC	NRC	-281	36
MC-495	VNIIFTRI	-117	46
MC 897	VNIIFTRI	-26	38

(Table 2 in that	paper is Table A5	here above)
------------------	-------------------	-------------

10	1857277		1860951			
194	W	UL	W	UL		
H ₂	0.001191671	0.11	0.001215794	0.11		
17						
20.3						
Ne	0.008495882	0.11	0.008503931	0.11		
O ₂	0.09184464	0.09	0.09181104	0.09		
Ar	0.21598525	0.05	0.21594546	0.05		
Hg	0.84416905	0.04	0.84415967	0.04		
H ₂ O	25.5496619	0.03	25.5365537	0.03		

misprint in Line O2 1857277: W [Steur, 1999]

Table 2.2: Calibration data for IMGC capsule thermometers.

TABLE A8. Summary of CCT-K2.xx comparisons [Steele, 2002;].

1/0	BNM u	/mK II	MGC	К	RISS	N	IIST	N	IPL	١	IRC	P	νтв	Ň	VNIFTRI	١	Nmi-VSL	I	NTiBS	I	NMIJ	
K2 LabĞKCRV Lab Ğ NRC(K2)	-0,07 0,01	0,26 0,25	-0,2 -0,16 -0,38 -0,4	0,12 0,12	0,09 0,1	0,17 0,17	0,07 -0,05	0,1 0,12	0,02 0,06	0,18 0,15	0,18 0,24	0,22 0,22	0,18	0,23		E	56202	2	202	,	D-2	
K2.1 LabĞKCRV Lab Ğ NRC(K2)															-0,13 0,34 0,64	0,33 0,32 0,32						
K2.3 LabĞKCRV Lab Ğ NRC(K2)										C 0	≎u-M-3 ,098 > F1	10					0,48 0,17	0,36 0,28				
K2.4 LabĞKCRV Lab Ğ NRC(K2)	Multicell improved 0,036 0,05	M-cell 0,34 0,33								C 0	≎u-M-3 ,098 > F1	10							0,35 0,04	0,34 0,33		
K2.5		E	c1=2							c	Cu-M-3											
LabĞKCRV			-0,49	0,57																F	-0,51	0,27
Lab Ğ NRC(K2)		μ	(Ğ316) (240)																	L	-0,22	0,27
INRIMĞNMIJ		L	-0,019	0,08																	-0,224	0,20
								The de	gree of e	quivalen	ce of eac	h laborat	tory with I	respect	to the refe	rence va	alue is giv	/en by a	pair of nu	imbers:		

Figure A3. STAR Cells comparison (see differences in this Report). [Fellmuth et al., 2011]

Figure A4. IntInt: Lab_{cell} – KCRV (= 102), as measured by different Labs [Pavese, 1984].

Figure. A5. CCT-K2.