Time evolution of the thermodynamic temperature scale

Andrea Peruzzi
CCT Meeting Session 5
February 9th, 2021

Outline

Reflection on the historical development of:

- The concept of temperature
- Its measurement scales
$>$ Part 1:
- Main milestones in the path to our current understanding of the thermodynamic temperature and its measurement scale
- Basic concepts of measurement theory
$>$ Part 2:
- Evolution of the thermodynamic temperature scale over the past 100 years
$>$ Conclusions

The definition of thermodynamic temperature

> BIPM website:

- SI unit of thermodynamic temperature
- How SI unit is defined:
"by taking the fixed numerical value of k to be $1.380649 \cdot 10^{-23} \mathrm{JK}^{-1}$ "
- How SI unit is realized \rightarrow Mise en pratique

The definition of thermodynamic temperature

$>$ How is thermodynamic temperature defined?

- Phenomenological approach (Kelvin, 1854):
- Principles of classical thermodynamics $\quad \frac{Q_{1}}{Q_{2}}=\frac{T_{1}}{T_{2}}$
- Axiomatic approach (Caratheodory, 1909):
- Mathematical theorem on differential forms
- Demonstrates the existence of temperature as an integrating factor $\tau(x, y, z)$ for $d Q$

$$
\frac{d Q}{\tau}=d S
$$

- Microscopic approaches:
- Kinetic theory of gases

$$
\begin{aligned}
& E_{\text {Kin }}=\left(\frac{3}{2}\right) k T \\
& \quad P(E) d E=\Omega(E) \exp \left(-\frac{E}{k T}\right) \\
& P(E) d E=\frac{1}{\exp \left(\frac{E-\mu}{k T}\right) \pm 1}
\end{aligned}
$$

- Statistical mechanics
- Quantum mechanics

Part 1

Major milestones that led to the modern definition of thermodynamic temperature

Thermal equilibrium and zeroth principle

> Thermal equilibrium:
two thermodynamic systems A and B are in thermal equilibrium if: when they are brought into mutual thermal contact,
they continue to be in the states in which they were prior to the establishment of thermal contact
> Zeroth Principle:
if A is in thermal equilibrium with C and
B is in thermal equilibrium with C,
then A and B are in thermal equilibrium with each other

Thermal equilibrium and zeroth principle

> Provide a procedure to determine equality of temperatures: two systems A and B have the same temperature if they are in thermal equilibrium (when they are brought into mutual thermal contact...)

- Given any two systems A and B, you can determine whether $t_{\mathrm{A}}=t_{\mathrm{B}}$ or $t_{\mathrm{A}} \neq t_{\mathrm{B}}$

Measurement theory (Stevens, 1946)

> We can already create a $1^{\text {st }}$ simple type of measurement scale
> Nominal scale: can establish equality

- Example: numbers on the uniforms of football players
- Numbers are used as names, the actual number has no meaning (number 10 is not two times better than number 5)

$2^{\text {nd }}$ principle of thermodynamics

> Provides a procedure to order temperatures
> We can label each temperature with a serial number but we cannot assign a value to it:
$>$ Hotness series: $\{h\}=\left\{h_{1}, h_{2}, h_{3}, \ldots h_{k}, \ldots\right\}$

Measurement theory

$>$ We can create a $2^{\text {nd }}$ (more interesting) type of measurement scale
> Ordinal scale: can establish equality and order

- Not only $h_{\mathrm{i}}=h_{\mathrm{j}}$ or $h_{\mathrm{i}} \neq h_{\mathrm{j}}$
- But also: $h_{\mathrm{i}}>h_{\mathrm{j}}$ or $h_{\mathrm{i}}<h_{\mathrm{j}}$

Empirical temperature scales

> Empirical temperature scale: any order-preserving one-to-one mapping of the hotness series: $t: h \rightarrow \mathbb{Q}$
> Non-uniqueness of empirical temperature scale: if t is an empirical temperature scale, then any monotonic function $f(t)$ is also an empirical temperature scale

Measurement theory:

> Empirical temperature scales are ordinal scales:

- Historic Fahrenheit mercury-based scale
- Historic Celsius mercury-based scale
- Callendar scale
- ITS-27, ITS-48, IPTS-68 and ITS-90

Celsius mercury-based centigrade scale

> Celsius mercury-based centigrade scale (1741):

- Put a mark P_{1} corresponding to ice point
- Put a mark P_{2} corresponding to steam point
- Divide the interval $\overline{\mathrm{P}_{1} \mathrm{P}_{2}}=\mathrm{D}$ into 100 equal intervals
> It is a perfectly defined ordinal scale:
- It preserves equality and order
- It does not preserve equal intervals (equal intervals do not correspond to equal differences in hotness)
> Assumes $t=100 \cdot \frac{\mathrm{~d}}{\mathrm{D}}$ (mercury does not expand linearly on temperature)

Carnot theorem (1824)

> Carnot theorem (1824): all Carnot engines (reversible cyclic heat engines) that operate between two thermostats at temperatures t_{1} and t_{2} have the same efficiency

$$
\begin{aligned}
& \eta_{R} \equiv \frac{W}{Q_{1}}=1+\frac{Q_{2}}{Q_{1}} \\
& \rightarrow \frac{Q_{1}}{Q_{2}}=f\left(t_{1}, t_{2}\right) \\
& \rightarrow \frac{Q_{1}}{Q_{2}}=\frac{F\left(t_{1}\right)}{F\left(t_{2}\right)}
\end{aligned}
$$

> The ratio of the heats exchanged by the two thermostats is equal to the ratio of the same universal function of t, at t_{1} and t_{2}

Thomson's proposal (1848)

> A cascade of Carnot engines, each producing the same mechanical work W, would operate between thermostats separated by the same temperature interval ΔT :

$$
T_{1}-T_{2}=T_{2}-T_{3}=T_{3}-T_{4}=\cdots=\Delta T
$$

- Each degree of temperature produces the same amount of mechanical work at any $\boldsymbol{T} \rightarrow$ Preserves equal intervals of hotness
- Absolute (independent from the physical properties of the working fluid)

Measurement theory:
$>$ Thomson $1^{\text {st }}$ proposal belongs to a $3^{\text {rd }}$ type of measurement scale:
> Interval scale can establish:

- Equality
- Order
- Equal intervals
- Arbitrary zero

NATIONAL RESEARCH COUNCIL CANADA

Thomson's proposal (1854)

> Thomson's proposal (1854):

- make the simplest possible choice for F in $\frac{Q_{1}}{Q_{2}}=\frac{F\left(t_{1}\right)}{F\left(t_{2}\right)}$
- $\quad F(t) \equiv t \quad t \rightarrow T \quad \frac{Q_{1}}{Q_{2}}=\frac{T_{1}}{T_{2}}$

NATIONAL RESEARCH COUNCIL CANADA

Measurement theory:

> Thermodynamic temperature scale is a $4^{\text {th }}$ type of measurement scale
> Rational scale:

- Equality
- Order
- Equal Intervals
- Equal ratios
- Natural zero

Evolutionary path of temperature scales

Nominal scale: Distinguished only between cold and warm

Ordinal scale: Different degrees of warmer and colder introduced
 \square warm \square cool \square chilly \square cold \square freezing

Rational scale: Development of thermodynamics

$$
\frac{Q_{1}}{Q_{2}}=\frac{T_{1}}{T_{2}}
$$

1854: Kelvin thermodynamic scale $T_{\text {TP }}=273.16 \mathrm{~K}$

1724: Fahrenheit scale
1741: Celsius scale

Interval scale: Development of thermodynamics

1848: Thomson scale Modern Celsius scale

Snow is cold, fire is hot Modern Fahrenheit scale

Evolution: the more we learnt about temperature and its true nature, the more the scale was able to encode the structure of temperature in the numbers we used to measure it

Measurement theory (representational)

> A measurement scale is a correspondence between:

- the space of the quantity/magnitude/entity (hotness h_{i})
- the space of the numbers attributed to the quantity $\left(t_{\mathrm{i}}\right)$

Types of measurement scale (Stevens, 1946)

Scale	Mathematical operations among numbers	Allowed scale transformations $f: x \rightarrow f(x)$	Examples
Nominal	equality	f any $1: 1$ function	Uniform numbers in a football team
Ordinal	equality order	$f: x \rightarrow a x+b$	Celsius and Fahrenheit, Rockwell hardness
Interval	equality order	Thomson scale (1848), latitude and longitude,	
Rational	equal intervals equality order	Kelvin thermodynamic scale, length, mass	
equal intervals			
equal ratios			

Operations

Scale	Mathematical operations among numbers	Allowed scale transformations $f: x \rightarrow f(x)$	Examples		
Nominal	equality	f any $1: 1$ function	Uniform numbers in a football team		
Ordinal	equality order	f any monotonic function	Celsius and Fahrenheit, Rockwell hardness		
Interval	equality order				
Rational	$f: x \rightarrow a x+b$	Thomson scale (1848), latitude and longitude,			
equal intervals	$f: x \rightarrow a x$	equality order	Kelvin thermodynamic scale,		
equal intervals					
equal ratios				\quad	length, mass
:---					

> Scale operations with modern Celsius scale (interval scale)

- If we have $18^{\circ} \mathrm{C}$ in Paris and $9^{\circ} \mathrm{C}$ in Moscow, does it make sense to say that temperature in Paris is twice that in Moscow?
- If we have $18{ }^{\circ} \mathrm{C}$ in Paris, $9^{\circ} \mathrm{C}$ in Moscow, $32^{\circ} \mathrm{C}$ in Bangkok and $23^{\circ} \mathrm{C}$ in Los Angeles, does it make sense to say that $T_{\text {Paris }}-T_{\text {Moscow }}=T_{\text {Bangkok }}-T_{\text {LosAngeles }}$

Transformations

Scale	Mathematical operations among numbers	Allowed scale transformations $f: x \rightarrow f(x)$	Examples
Nominal	equality	f any $1: 1$ function	Uniform numbers in a football team
Ordinal	equality order	f any monotonic function	Celsius and Fahrenheit, Rockwell hardness
Interval	equality order		
Rational	equal intervals equality order	$f: x \rightarrow a x$	Thomson scale (1848), latitude
equal intervals			
equal ratios			

> Scale transformations

- Interval scale: from modern Celsius to Fahrenheit by applying a=9/5 and $b=32$
- Rational scale: in Kelvin thermodynamic scale change the triple point of water from 273.16 K to $7 \mathrm{~K}^{*}$ by applying a = 7/273.16

Part 2

Evolution of the thermodynamic temperature scale

Evolution of the thermodynamic scale (1/12)

Evolution of the thermodynamic scale (2/12)

Evolution of the thermodynamic scale (3/12)

Evolution of the thermodynamic scale (4/12)

Ice point $0{ }^{\circ} \mathrm{C}$	Triple point \|	Steam point $100{ }^{\circ} \mathrm{C}$	t
\leftarrow			T
	$\mathrm{X}{ }^{\circ} \mathrm{C}$		t
	X K		T

> 1948:

- The CGPM, on the advice of the CCT, accepted the principle of a thermodynamic temperature scale having a single fixed point provided by the TPW
- Problem: which numerical value should be attributed to the TPW?

Evolution of the thermodynamic scale (5/12)

	Triple point -	Steam point $100{ }^{\circ} \mathrm{C}$	t
			T
$\underset{X}{0.00993^{\circ} \mathrm{C}}$			t
	XK		T

1948:

- The interval between the ice point and the triple point was accurately known already at that time: $0.00993^{\circ} \mathrm{C}$

Evolution of the thermodynamic scale (6/12)

Evolution of the thermodynamic scale (7/12)

Evolution of the thermodynamic scale (8/12)

Evolution of the thermodynamic scale (9/12)

Evolution of the thermodynamic scale (10/12)

Evolution of the thermodynamic scale (11/12)

Evolution of the thermodynamic scale (12/12)

Evolutionary path of temperature scales

Nominal scale: Distinguished only between cold and warm

Ordinal scale: Different degrees of warmer and colder introduced
 \square warm \square cool \square chilly \square cold \square freezing

Rational scale: Development of thermodynamics

$$
\frac{Q_{1}}{Q_{2}}=\frac{T_{1}}{T_{2}}
$$

1854: Kelvin thermodynamic scale $T_{\text {TP }}=273.16 \mathrm{~K}$

1724: Fahrenheit scale
1741: Celsius scale

Snow is cold, fire is warm

Development of thermodynamics

1848: Thomson scale Modern Fahrenheit scale Modern Celsius scale

Evolution: the more we learnt about temperature and its true nature, the more the scale was able to encode the structure of temperature in the numbers we used to measure it

Conclusions

> What has changed since 2019:

- in the thermodynamic temperature scale
- in the definition of thermodynamic temperature that the scale assumes
> Type of scale: unchanged, still a rational scale
- TPW value can change, without affecting the size of the kelvin (because the size of the kelvin is not linked anymore to the TPW value)
> Size of the unit: change not perceptible
- $2 \mu \mathrm{~K}$ at TPW and $9 \mu \mathrm{~K}$ at Ag fixed point
> Definition (meaning) of temperature: basically unchanged
- Temperature is the average thermal energy per degree of freedom in the system
- Not only a thermodynamic temperature but also a statistical thermodynamic temperature

Acknowledgement

$>$ Rod White (zoom discussions and correspondence)
> Richard Rusby (correspondence)

THANK YOU

Andrea Peruzzi: andrea.peruzzi@nrc-cnrc.gc.ca

Consistency between the old and the new unit

> Old kelvin (before 20 May 2019):

- TPW is the exactly known defining constant $\quad T_{T P W}=273.16 \cdot K_{\text {old }}$
> New kelvin (after 20 May 2019):
- TPW is inexactly known
> $T_{\text {TPW }}$ does not depend on the SI unit adopted:
$T_{T P W}=\mathrm{X} \cdot K_{n e w}$
Tpw does not depend on the Sl unitadopted:
$273.16 \cdot K_{\text {old }}=\mathrm{X} \cdot K_{\text {new }}$
> Consistency factor f :

$$
\mathrm{f}=\frac{X}{273.16}=\frac{T_{T P W} / X}{273.16}=\frac{k_{\text {old }}}{k_{\text {new }}}
$$

	$\boldsymbol{k}_{\text {old }}$	$\boldsymbol{k}_{\text {new }}$	\boldsymbol{f}	$\boldsymbol{\mu K}$ at TPW	$\boldsymbol{\mu K}$ at Ag
CODATA 2017	$1.38064901 \times 10^{-23}$	1.380649×10^{-23}	1.000000007	2	9
CODATA 2014	$1.38064852 \times 10^{-23}$	1.380649×10^{-23}	0.999999652	95	

Definition of the kelvin

The kelvin is:
the change of thermodynamic temperature that results in a change of mean thermal energy of $1.380649 \cdot 10^{-23} \mathrm{~J}$ for the molecules of the system

