CIPM

Consultative Committee for Thermometry

Working Group Environment

Report 2020

Members:

- Stephanie Bell (NPL)
- Efrem Ejigu (NMISA)
- Carmen García Izquierdo (CEM)
- Drago Groselj (WMO-CIMO)
- Martti Heinonen (MIKES)
- Murat Kalemci (UME)
- Yong Gyoo Kim (KRISS)
- Christian Monte (PTB)
- Peter Pavlasek (SMU)
- Fernando Sparasci (LNE-Cnam)
- Howard Yoon (NIST)
- Naohiko Sasajima (NMIJ/AIST)
- Eric van der Ham (NMIA)
- Hao Xiaopeng (NIM)
- Victor Fuksov (VNIIM)
- Júlio D. Brionizio (INMETRO)

Chairperson: Andrea Merlone (INRIM)

Co-opted members:

Rainer Feistel (Leibniz Institute for Baltic Sea Research)

Peter Thorne (Maynooth University)

Invited to attend

Åge Andreas Falnes Olsen (JV)

Farzana Masouleh (MSL)

Gaber Beges (UL-LMK)

Javier García Skabar (INTI)

Aleksandra Kowal (INTiBS)

Krunoslav Premec (WMO)

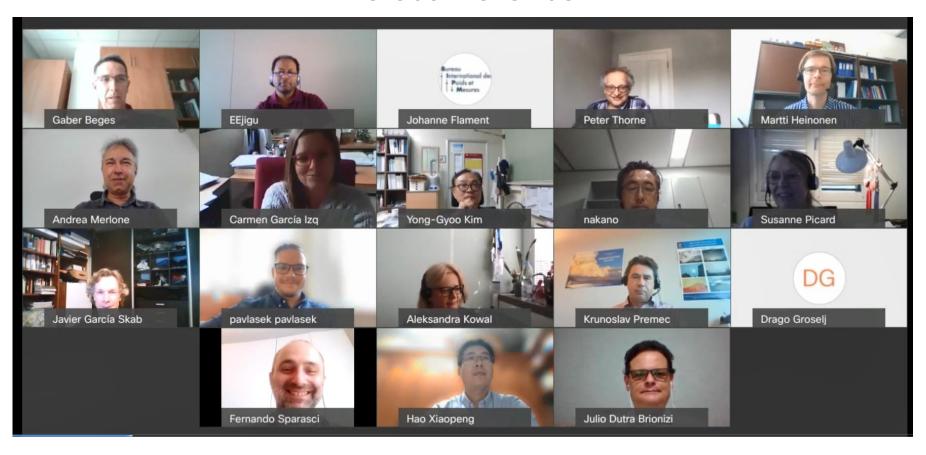
CCT Working Group Environment

CCT WG Env – Report 2020 – A. Merlone

Consultative Committee for Thermometry Working Group Environment

Meeting 3. 2019 June 11, 6.00 pm – 7.30 pm Chengdu (China)

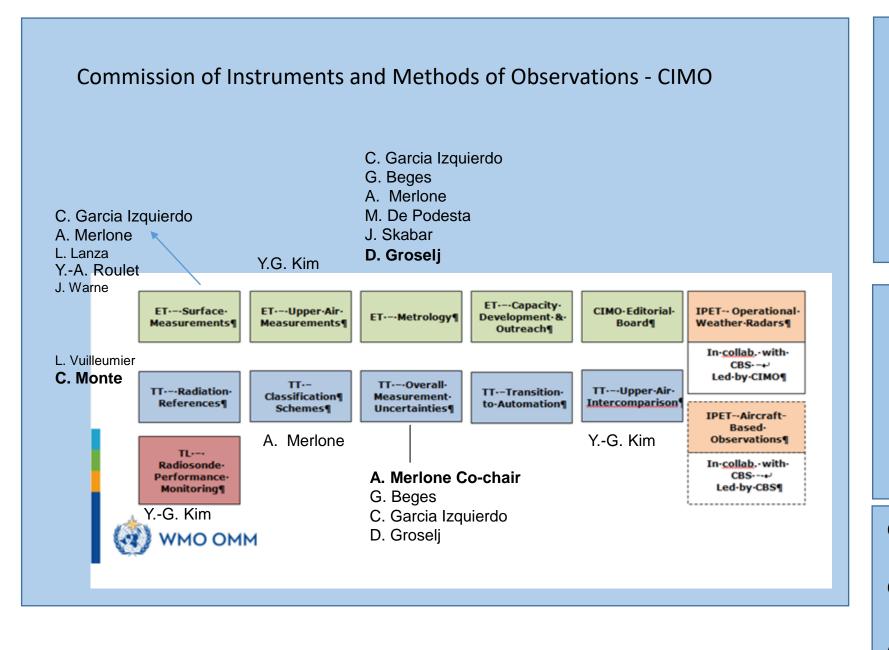
Closing event of the 3rd Metrology for Meteorology and Climate Conference – MMC2019



CCT WG Env – Report 2020 – A. Merlone

Consultative Committee for Thermometry Working Group Environment

Meeting 4. 2020 September 24, 12.00 – 14.00 CET Teleconference


Reports from members, activities under WMO and other Institutions, projects

Identified fields of study for the CCT WG ENV

CEM, CNAM, DTI, INRIM, KRISS, NIST, NIM, NMIA, NMIJ, NPL, PTB, SMU, UL, VSL

	Air	Water	Soil
Goal	Evaluate components of uncertainty Define reference value for atmospheric Near Surface Temperature	Reduce uncertainty Establish agreed definitions of some parameters, like SST (Sea Surface Temperature) and measurement procedures	Standardize methods
Institutions	CIMO CCI GSRN GRUAN	JPI Oceans Jamstec	GCW Polar programmes GSRN
Existing systems	Self-heating. Characterization of the intrinsic behavior of thermometers Dimensions Shield and radiation correction Calibration in air (ATM) – ILC-IC Radiosondes	Calibration curves	Dataloggers Boreholes features
New instruments	Non contact (NST, radiosonde) Drones – IoT	Fibre optics (for gradients)	Fibre optics (for gradients)
Quantitie of influence	Radiation Wind Condensation/evaporation Site Pressure (radiosonde)	Pressure	Convection
Other	Standards for Precipitation (liquid-Solid) Urban climate	Salinity	Moisture Agriculture

CCT WG Env – Report 2020 – A. Merlone

Commission of Climatology

Rapporteur group on Reference Stations

A. Merlone - Chair

G. Beges

J. Skabar

Global Cryosphere Watch

Best Practice team on Permafrost

A. Merlone - Chair

Global Climate Observing System

GCOS - Surface Reference Network

A. Merlone

Commission of Instruments and Methods of Observations - CIMO

ET "Metrology"

ET "Surface Measurements"

ET "Upper air measurements"

TT "Radiation references"

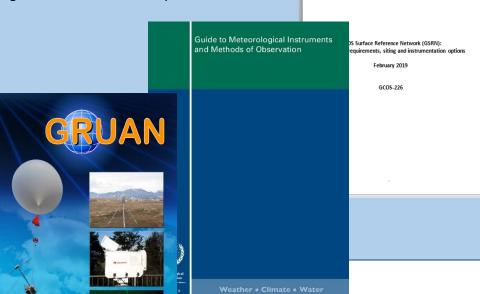
TT "Uncertainties"

TL "Radiosondes performance"

TT "UA Intercomparison"

Contributions to

Training on measurements, uncertainties and units to be published in WMO web pages


Revision of the "WMO Guide on Instruments and Methods of

Observations

Interlaboratory comparisons
Instrument performance classification

Uncertainty evaluation

Siting classification and experiments

Commission of Climatology

Climate Reference Stations

A. Merlone - Chair

Extended document prepared including requirements, features, technical annexes and uncertainty values

Global Cryosphere Watch

Best Practice team on Permafrost

A. Merlone – Chair
Definition of guidelines on
Permafrost ECV for inclusion in
the WMO guide No. 8

Global Climate Observing System
GCOS - Surface Reference Network
A. Merlone
Conclusion of GSRN - GCOS 226

cc vv3 Env – Report 2020 – A. Merlone

® GCOS

Commission of Instruments and Methods of Observations - CIMO

ET "Metrology"

ET "Surface Measurements"

ET "Upper air measurements"

TT "Radiation references"

TT "Uncertainties"

TL "Radiosondes performance"

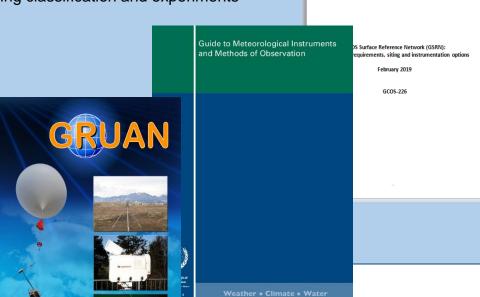
TT "UA Intercomparison"

Contributions to

Training on measurements, uncertainties and units to be published in WMO web pages

® GCOS

Revision of the "WMO Guide on Instruments and Methods of


Observations

Interlaboratory comparisons

Instrument performance classification

Uncertainty evaluation

Siting classification and experiments

CCT vv3 Env – Report 2020 – A. Merlone

Commission of Climatology

Climate Reference Stations

A. Merlone - Chair

Extended document prepared including requirements, features, technical annexes and uncertainty values

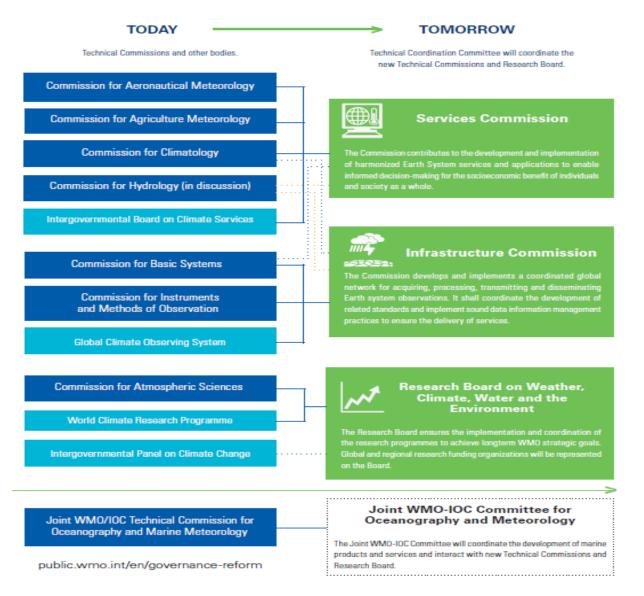
Global Cryosphere Watch

Best Practice team on Permafrost

A. Merlone – Chair

Definition of guidelines on

Permafrost ECV for inclusion in
the WMO guide No. 8


Global Climate Observing System GCOS - Surface Reference Network A. Merlone

Conclusion of GSRN - GCOS 226

Implementation plan 2020-2024

WMO REFORM MAPPING TECHNICAL COMMISSIONS & OTHER RODIES

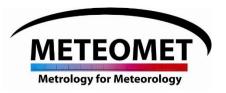
New Task teams are being created.

CCT Members are expected to contribute in the SC-MINT of the INFCOMM

(Standing Committee on Measurements, Instrumentation and Traceability)

Andrea Merlone – **Chair** ET MU + Member ET QTC
Christian Monte – **Vice Chair** ET – Radiation
Carmen G. Izquierdo – Member ET QTC + ET Surface
Stephanie Bell – Member ET QTC
Yon Gyoo Kim – Member ET MU – ET Upper Air

Projects



Metrology for non-catching rain instruments

Chief Stakeholder	World Meteorological Organisation (WMO)
Contact:	Bertrand Calpini - Permanent Representative on CIMO WMO
Address:	Ch. de l'Aérologie 1, CH-1530 Payerne
Phone:	+41 58 460 92 45
Email:	bertrand.calpini@meteoswiss.ch

This project will develop traceable calibration methods for non-catching precipitation gauges that are implemented in a form that can be incorporated into standards.

no.	Participant Type	Short Name	Organisation legal full name	Country
1	Internal Funded Partner	INRIM	Istituto Nazionale di Ricerca Metrologica	Italy
2	Internal Funded Partner	CEM	Centro Español de Metrología	Spain
3	Internal Funded Partner	DTI	Teknologisk Institut	Denmark
4	Internal Funded Partner	SMD	Federale Overheidsdienst Economie, KMO, Middenstand en Energie	Belgium
5	External Funded Partner	UNIGE	Università degli Studi di Genova	Italy
6	Unfunded Partner	EDI	Eidgenössische Departement des Innern	Switzerland
I VVO LIIV — NEPUIL 2020 — A. IVIEHOHE				

EMPIR 19SIP03 - «Climate Reference Station»

Coordinator: A. Merlone

Primary supporter: WMO

November 2020 – October 2023

WORLD METEOROLOGICAL ORGANIZATION OCEANOGRAPHIC

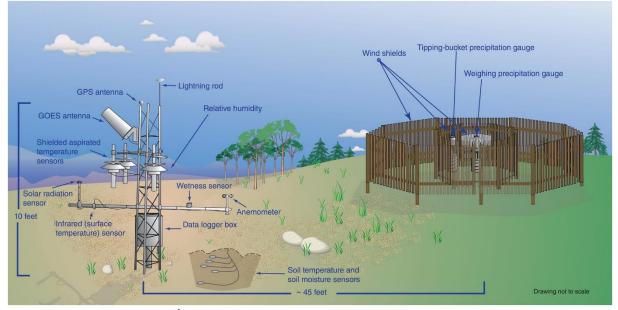
GCOS Surface Reference Network (GSRN):

Justification, requirements, siting and instrumentation options

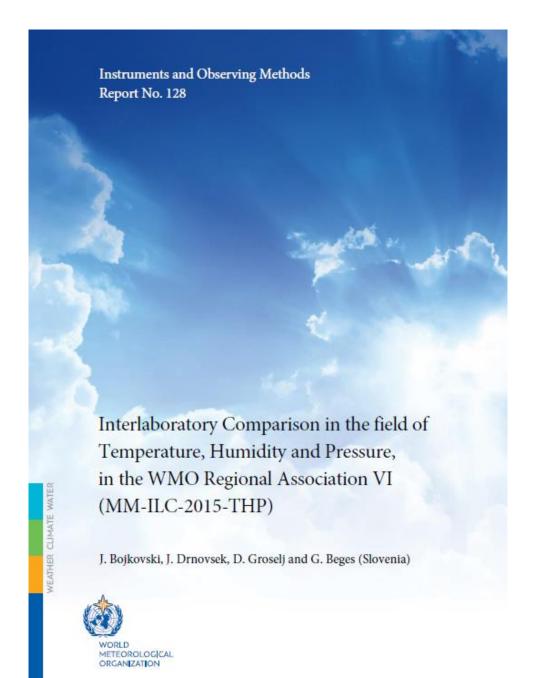
February 2019

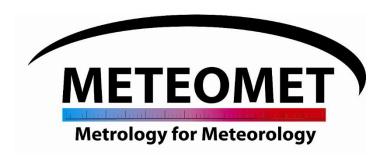
GCOS-226

UNITED NATIONS ENVIRONMENT PROGRAMME


INTERNATIONAL SCIENCE COUNCIL

EMPIR 19SIP03 – CRS Climate Reference Stations


Start date: Nov 2020


Primary Supporter:	World Meteorological Organisation		
Contact:	Manola Brunet – WMO CCI President		
Address:	Centre for Climate Change (C3) at University Rovira I Virgili -		
Address.	Carrer de l`Escorxador, s/n, 43003 Tarragona - Spain		

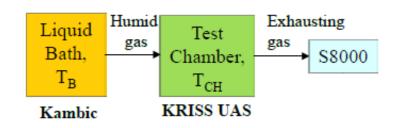
Support the definition of the instrumental features required for reference climatological stations and their recommendation to the WMO Commission of Climatology and for the Global Climate Observing System Surface Reference Network (GSRN) for implementation.

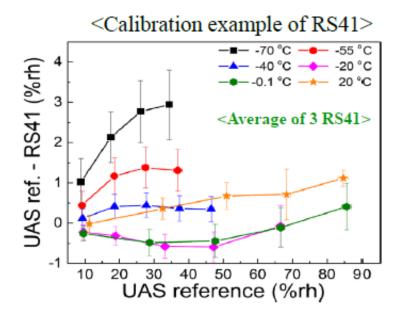
CCT WG Env – Report 2020 – A. Merlone

Originated as MeteoMet task, for the European Meteorological ad Hydrological services, it extended (concluded) in Asia and is now planned in South America and Africa

WMO-MM-ILC-2015-THP in WMO region VI published as IOM Report No. 128

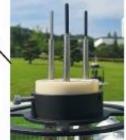
WMO-MM-ILC-2018-THP-2 in WMO region II and \lor is in a final draft stage




To spread the same idea is planned WMO-MM-ILC-2020-THP in WMO region I, III and IV

Construction of radiosonde humidity test facility

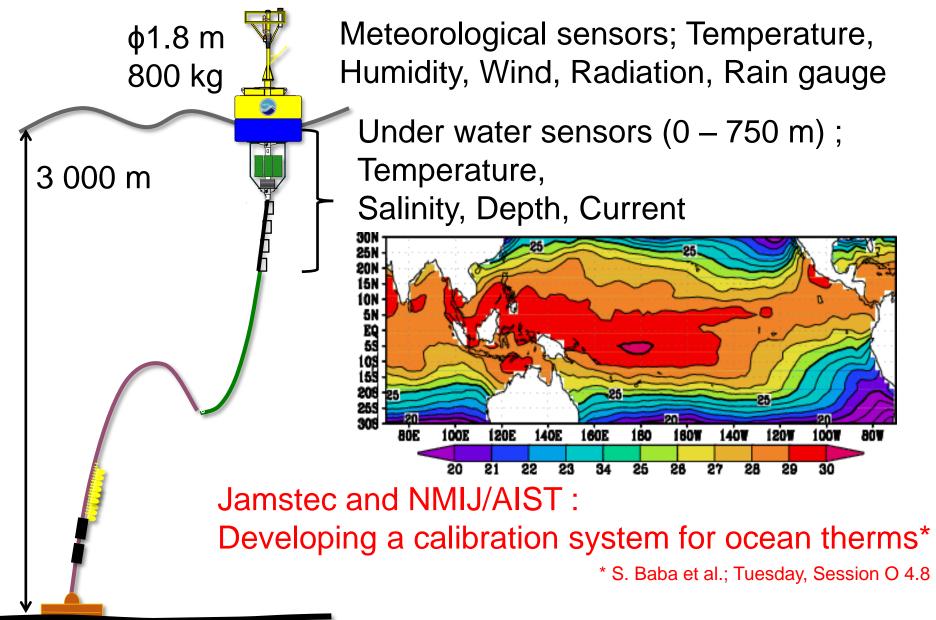
- ☐ Humidity generation using 2T method
 - ◆ Temperature range down to -70 °C
 - Radiosonde inside test chamber
 - Combining with chilled mirror hygrometer (Michell S8000)
 - Calibration uncertainty of $(1.0 \sim 1.5)$ %rh (k = 2)



Studies on Air Temperature Measurement

- ☐ KRISS AWS station
 - 5 thermometer screens
 - 2 KRISS, 2 Barani, 1 Vaisala
 - Barometer, Anemometer, Radiometer
- KRISS-made radiation screens
 - Forced convection type (2~3 m/s)
 - One white, two black-coated PT100s inside
 - To study the effects of albedo
 - Normal vs Umbrella style
 - · My key point!
- ☐ Umbrella screen
 - Screen under umbrella (first trial in the world in my knowledge!)
 - Umbrella can protect from direct sunlight, rain, and snow.
- Comparison of thermometer screen
 - KRISS vs Barani vs Vaisala

KRISS-made radiation screens



Which type of screen is the best for air temperature measurement?



Observation Mooring System

Extreme temperature record: 54 °C

For the first time the metrology community (CCT) was requested to contribute to the validation process

WMO examines reported record temperature of 54°C in Kuwait, Iraq

WMO will set up a committee to examine whether Mitrabah, Kuwait, set a new highest temperature record for the Latest WMO News Eastern hemisphere and Asia, with a reported temperature of 54.0°C (129.2°F) on 21 July 2016.

Large parts of the Middle East and North Africa were gripped by heatwaves since last week. Temperatures exceeding by a large margin the seasonal averages, and over a sustained period. This affected, in particular, the northern part of countries in the Arabian Gulf and North Africa.

Mitrabah reportedly saw a temperature of 54.0°C on 21 July and the city of Basra in Iraq recorded a temperature of 53.9°C (128°C) on Friday 22 July. Southern Morocco also saw temperatures of between 43°C and 47°C.

Governments issued heat-health warnings and took measure to minimise impacts on population. However the refugee population in the Middle East were the most affected, with heat exacerbating their fragile situation and

WMO is responsible for the official archives of World Weather and Climate Extremes (temperature, rainfall, wind gust, heaviest hailstone etc).

According to this archive, the hottest temperature ever recorded was in Furnace Creek, Death Valley, California at

The 63rd National Antarctic Expedition _ Starts - Roshydromet

1 November 2017

WMO hosts women's marine leadership

workshop

1 November 2017

WMO and CIMH co-host international

training symposium in Barbados


30 October 2017

WMO Formally requests to validate two temperature records, being the third value ever recorded and the highest in Asia

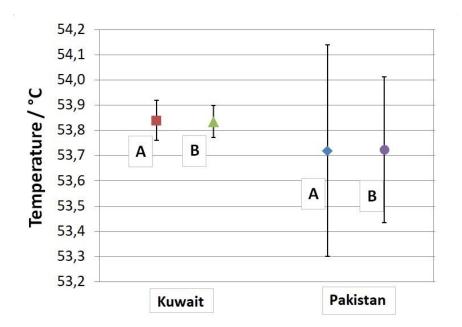
2016 Mitribah - Kuwait 54 °C 2017 Turbat - Pakistan 54 °C

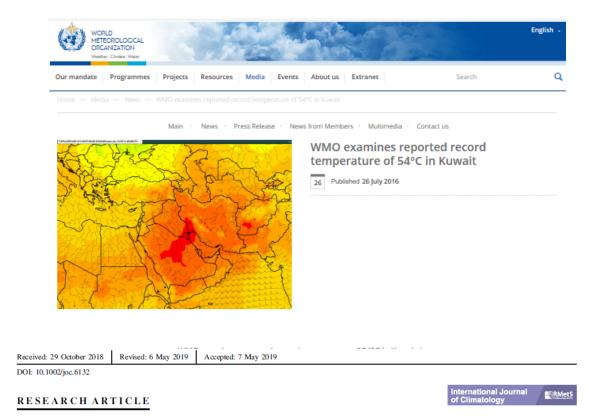
Study and research on conditions, heat wave, instruments, uncertainties

WMO is responsible for the official archives of World Weather and Climate Extremes (temperature, rainfall, wind

According to this archive, the hottest temperature ever recorded was in Furnace Creek, Death Valley, California at

WMO and CIMH co-host international


training symposium in Barbados


30 October 2017

gust, heaviest hailstone etc).

Results

	Corrected Value (°C)	Uncertainty (°C)	
Kuwait calibration (A)	53.87	±0.080	
Kuwait comparison (B)	53.84 ±0.064		
Pakistan calibration (A)	53.72	±0.40	
Pakistan comparison (B)	53.72	±0.29	

Temperature extreme records: World Meteorological Organization metrological and meteorological evaluation of the 54.0°C observations in Mitribah, Kuwait and Turbat, Pakistan in 2016/2017

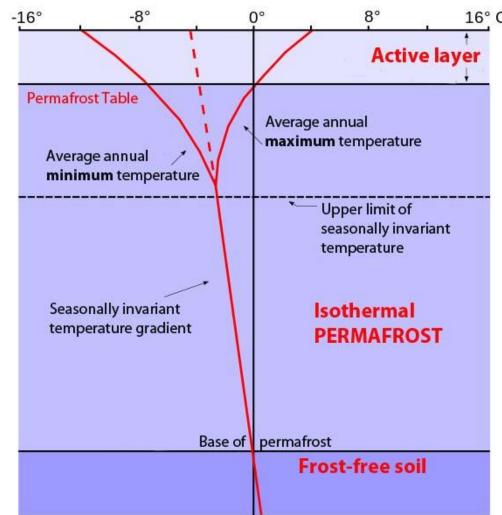
```
Andrea Merlone<sup>1</sup> | Hassan Al-Dashti<sup>2</sup> | Nadeem Faisal<sup>3</sup> | Randall S. Cerveny<sup>4</sup>  | Said AlSarmi<sup>5</sup> | Pierre Bessemoulin<sup>6</sup> | Manola Brunet<sup>7,8,9</sup> | Fatima Driouech<sup>10</sup> | Yelena Khalatyan<sup>11</sup> | Thomas C. Peterson<sup>8</sup> | Fatemeh Rahimzadeh<sup>12</sup> | Blair Trewin<sup>13</sup> | M. M. Abdel Wahab<sup>14</sup> | Serpil Yagan<sup>15</sup> | Graziano Coppa<sup>1</sup> | Denis Smorgon<sup>1</sup> | CCT WG Env — Republic Color Colo
```

Results

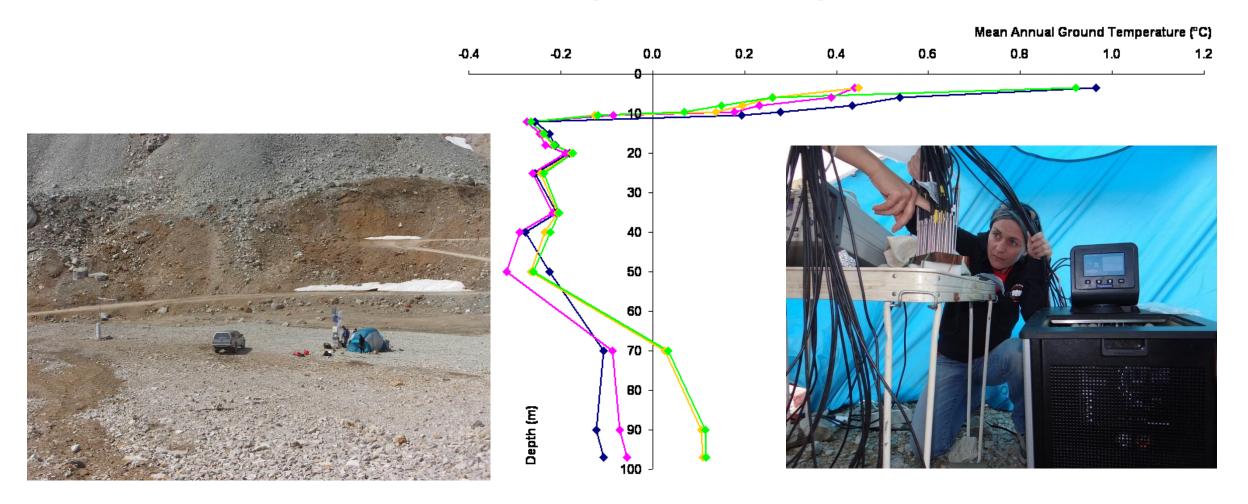
NOV 2020 - A new task included in the workplan of the WMO INFCOM Expert Team "Measurement Uncertainties" on establishing a continuous process for validating extreme records at occurrence.

Organization metrological and meteorological evaluation of the 54.0°C observations in Mitribah, Kuwait and Turbat, Pakistan in 2016/2017

```
Andrea Merlone<sup>1</sup> | Hassan Al-Dashti<sup>2</sup> | Nadeem Faisal<sup>3</sup> | Randall S. Cerveny<sup>4</sup>  | Said AlSarmi<sup>5</sup> | Pierre Bessemoulin<sup>6</sup> | Manola Brunet<sup>7,8,9</sup> | Fatima Driouech<sup>10</sup> | Yelena Khalatyan<sup>11</sup> | Thomas C. Peterson<sup>8</sup> | Fatemeh Rahimzadeh<sup>12</sup> | Blair Trewin<sup>13</sup> | M. M. Abdel Wahab<sup>14</sup> | Serpil Yagan<sup>15</sup> | Graziano Coppa<sup>1</sup> | Denis Smorgon<sup>1</sup> | CCT WG Env — Report 2020 | Daniel Krahenbuhl<sup>4</sup>
```


Permafrost: an amplified indicator of climate change.

Permafrost is ground (soil, rocks, sediments) that continuously remains frozen extending from the surface to to several kilometers deep under the Earth's surface.


Permafrost is present in polar areas, cold regions and high mountains.

It freezes and thaws annually in its upper part, called «active layer». The active layer depth increases in the years, due to global warming. Permafrost is slowly disappearing in some areas, such as in the Alps.

Detecting the depth of the active layer requires temperature **measurements at the level of 0.02 °C**, which is challenging in such conditions and locations.

July 2017, August 2018, September 2020. Permafrost monitoring. A metrology lab at 3000 m

2019 creation of the Permafrost best practice group

Andrea Merlone INRiM (IT) co-chair

Anna Irrgang AWI (DE) co chair

Rodica Nitu WMO-GCW secretariat

Jeanette Noetzli SLF (CH) member

Philippe Schoeneich Univ.Grenoble (FR) member

Ketil Isaksen Meteo Norway (NO) member

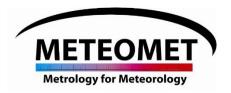
Develop recommended practices for permafrost observations, as well as uncertainty evaluations associated with present, operational stations, for inclusion in the WMO guide No. 8.

2017-2018 metrology in the Arctic

New Metrology lab opened and presented at the station leaders in Ny-Ålesund

CCT WG Env - Report 2020 - A. Merione

Arctic Metrology Workshops



1st Torino, April 2015 2nd Oslo, May 2016 3rd Ny-Ålesund, May 2017 4th Oslo, November 2019

Increasing the **CO**mparability of extreme **A**ir **T**emperature measurements for meteorological and climate studies

EMPIR 06 SIP 19 – (MeteoMet SIP) – Coordinator Carmen Garcia Izquierdo – CEM – Oct 2020 – Sept. 2023

WMO Intercomparison of thermometers and shields in polar environment

Primary Supporter:

Primary Supporter:	World Meteorological Organization
Contact:	Bruce W. Forgan
Address:	WMO Secretariat – 7 bis, avenue de la Paix – Case postale 2300 – CH 1211 Genève 2 – Suisse

Participant details:

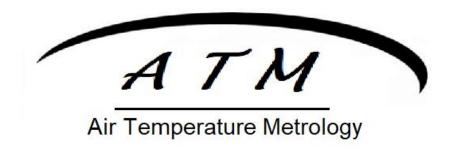
a. Partners (participants who will accede to the Grant Agreement)

no.	Participant Type	Short Name	Organisation legal full name	Country
1	Internal Funded Partner	CEM	Centro Español de Metrología	Spain
2	Internal Funded Partner	INRIM	Istituto Nazionale di Ricerca Metrologica	Italy
3	External Funded Partner	CNR	Consiglio Nazionale delle Ricerche	Italy
4	Unfunded Partner	EDI	Eidgenössische Departement des Innern	Switzerland

Air temperature

Strategy Document for Rolling Programme Development for 2018 to 2027

The Consultative Committee for Thermometry


https://www.bipm.org/utils/en/pdf/CCT-strategy-document.pdf

	traceability of measurements.				
Guides on thermometry					
The guide on specialised fixed points has been prepared and is	Within the next year to have the two thermocouple guides				
online.	(general thermocouple thermometry and reference				
	thermocouples) online.				
	CCT recommends NMIs to include in their vision documents	CCT recommends NMIs to include in their vision			
	coordinated efforts of single NMIs, groups of NMI and	documents coordinated efforts of single NMIs, groups o			
	RMOs towards the development of guidelines	NMI and RMOs towards the identification of			
	for calibration of thermometers in air	appropriate actions to disseminate best practice and			
	for the evaluation of uncertainty components for	adoption of metrological methods and terminology, also			
	temperature measurements in air, water (deep sea and	considering the opportunity of adapting such methods			
	sea surface, rivers, lakes, underground), ice and soil	and terminologies, to practical use and input from the			
	to support the definition of target uncertainties and	external communities			
	instrumental aspects in the creation of reference				
	observing networks for climatology				
	to support metrology aspects in managing changes and				
	transition from different instrument typologies (manual				
	to automatic recordings)				

The **air temperature measurements** still present open issues in identifying the components of the uncertainties budget and in their evaluation. The evaluation of the uncertainty in atmospheric air temperature measurements, both at ground level and in upper atmosphere, together with a fully documented traceability, is the fundamental condition to achieve data comparability within and among observing networks, in space and time and for the validation of different techniques.

WG Environment to initiate studies and publication on this subject.

In a long-term vision, it is expected that the joint work of metrologists and the user community will improve the knowledge on this key measurement for atmospheric studies and climate monitoring.

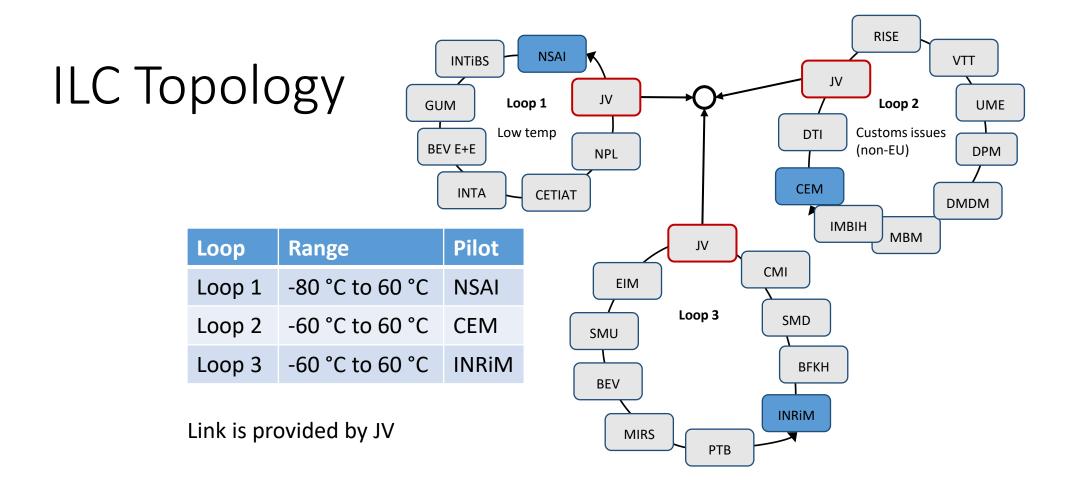
Two main tasks:

- Perform a **pilot study** in the form of interlaboratory comparisons, to explore issues around calibration in air of temperature sensors;
- 2. Feed into a **guidance document** the findings from the pilot study. (main objective)

EURAMET Project Form

Document: G-OPS-TMP-024 Version: 2. Approved: Head of Secretariat 2013-02-01

1	Status	X proposed		Reference No:	
		□agreed		(if already existing)	
2	Subject Field	d	T - Temperatu	ire	
			T - Temperatu		
			i - remperati	iie	
3	Type of colla	boration	Cooperation i	n Research	
3A		f a compariso			
	_			pplementary Comparison (SC) in the KCDB:	
		If yes: No. of		71. 00 W00	
			proved by the r	esponsible CC WG?	
	□no □yes				
4	Coordinator				
	Institute/Cour		I - Italy		
	Name:		a Merlone		
	Phone:		11 3919 734		
	E-mail:	a.mer	lone@inrim.itT		
5	Participating	Partners			
5A	EURAMET m	embers or ass	ociates (Institut	e's standard acronym with country code in	
		registered on E	URAMET web	site.	
	INRiM (IT)				
CEM					
CMI (
	DTI (DK)				
,	LNE (FR)				
	INTiBs (PL) NPL (UK)				
	NSAI NML (IE)				
	MIRS/UL-FE/LMK (SI)				
	SMD (BE)				
	UME (TK)				



European air temperature Piloit Study - ILC

Goals:

Identify calibration issues with common air temperature sensors Input to best practice for air temperature sensor calibration Help support CMCs (this ILC likely needs to be followed up)



Sensors

Manufacturer/Type	Probe dimensions (mm)	
	Length	Diameter
VAISALA/ TMP1	130	6
Calpower/ NS	130	3
WIKA/ TR60 Special	44	7.76
WIKA/ Model CTP5000-170B	350	6
PHYSICUS/ PT100/10	117	5
BEV E+E/PT100	230	6
BEV E+E/PT100 Coated	230	6
MBW	40	4

- All PRTs
- Wide range of mechanical shapes
- Different quality of electrical insulation
- Some handle immersion in liquid, some does not
- Minor repairs carried out by participants
- Cycling and careful characterisations carried out at pilots

Sensors

Air Temperature Metrology



Physicus PT100/10

Observations

- ILC is close to the end. Data analysis will follow
- Sensors:
 - Some humidity issues seen (irreproducible measurements)
 - A few trivial fixes (cables, insulation)
 - Additional heat treatment twice
- Rescheduling
 - Twice in response to participant needs
 - Once due to customs issues
- Some difficulty reaching the lowest temperatures
- Very different approaches in the laboratories
 - Encouraged from the start to support the research objectives
 - Hopefully valuable input to best practice

NMIs from other RMOs are invited to join the project for producing a common best practice guide for calibration of thermometers in air.

Atmospheric air temperature.

Definition -> Position paper

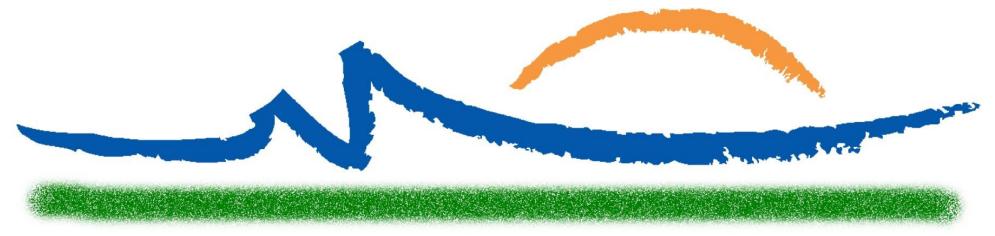
It was concluded that air temperature is an underrated measurement problem/difficulty in metrology and a widely measured variable in numerous studies and as a quantity of influence. The preparation of a position paper on understanding and evaluating uncertainties in air temperature measurements has so been proposed.

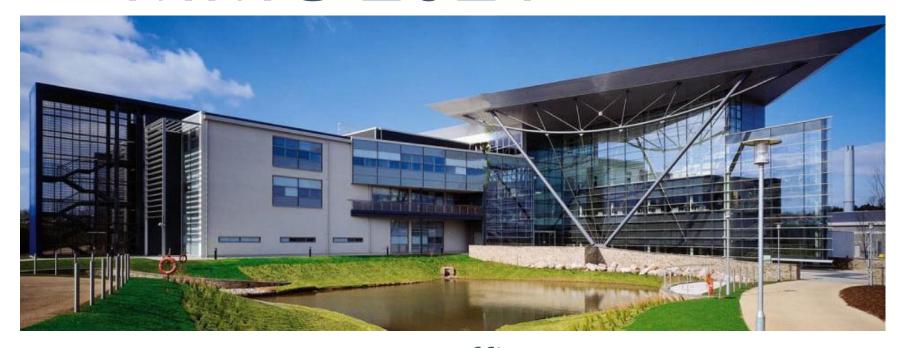
A task group is proposed (not limited to WG ENV Members)...

- Prepare the position paper
- Identify needs, promote and coordinate activities on the various open issues about evaluating uncertainties in air t
 - Deliver a proposal for an operative definition of air t

Events

V Arctic Metrology Workshop Longyearbyen – Svalbard

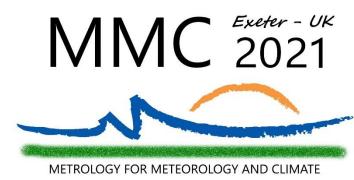

Hosted by University of Svalbard and SIOS date?


CCT WG Env – Report 2020 – A. Merlone

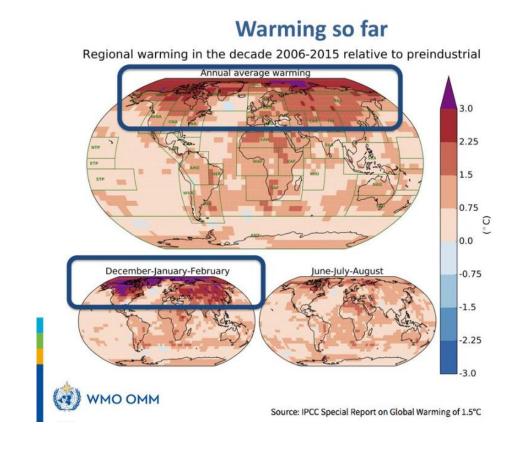
M Exeter - UK 2021

METROLOGY FOR METEOROLOGY AND CLIMATE

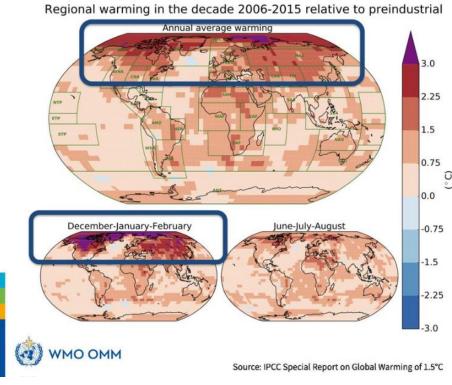
MMC 2021



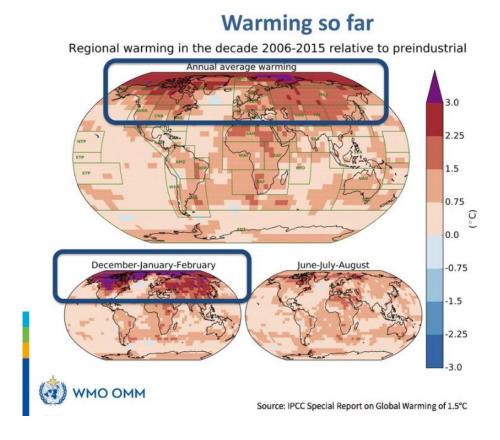
Exeter – UK Met Office September 2021



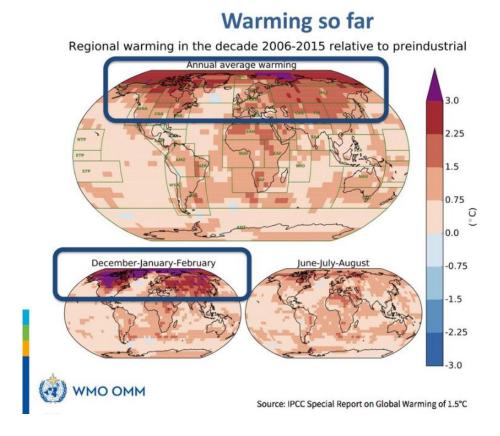
MMC2021



- Proposed as hybrid event: both in person (if possible) and with web-based attendees (to increase participation and reduce travel costs and travel impact)
- Conference moved to Spring (April-May) 2022
- A "Waiting for MMC" webinar in October 2021.
- Same location (Exeter UK Met Office)
- WMO Secretariat proposes to have the SC-MINT meeting as satellite event
- CCT WG Environment can also meet (both in person and remotely)


Just the thing we do better,

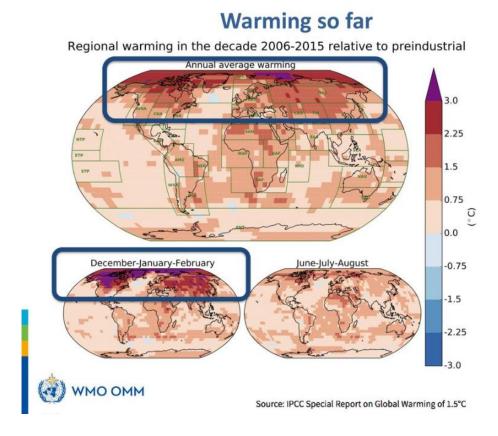
Just the thing we do better,


which is also the most important to understand climate change

Just the thing we do better,

which is also the most important to understand climate change

Measure temperature!

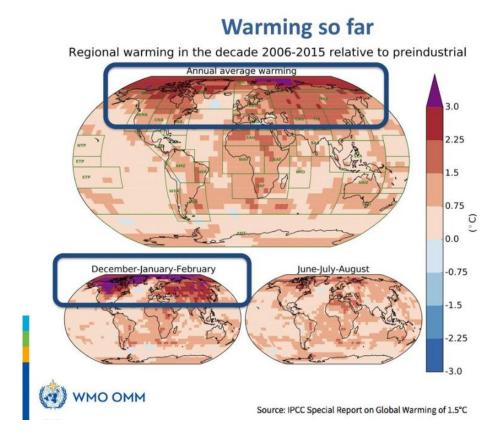


Just the thing we do better,

which is also the most important to understand climate change

Measure temperature!

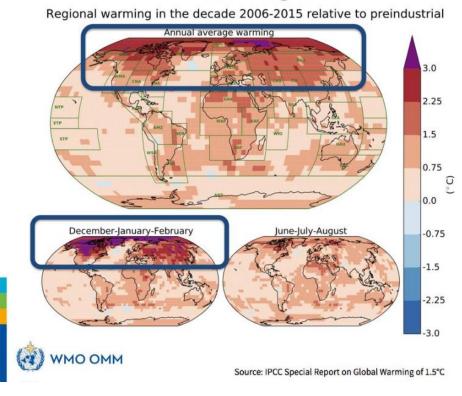
In air, water, soil, ice


Just the thing we do better,

which is also the most important to understand climate change

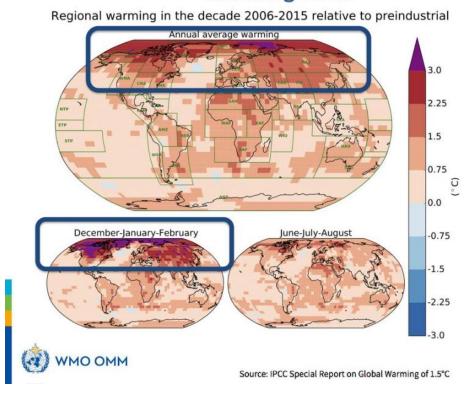
Measure temperature!

In air, water, soil, ice


And contribute in improving instruments, methods and uncertainty evaluations

As a motivated and united community

Warming so far



As a motivated and united community

Hoping to meet in person soon

Warming so far

Thank you