# †||CCQM





# Accurate Monitoring of Surface Ozone Virtual Workshop 5-9 October 2020

Implementing a Globally Coordinated Change in Ozone Cross Section Value for Surface Ozone Monitoring

## **Paul Brewer**

5 October 2020

### Introduction



Global distribution of near-surface ozone concentration measured by the GAW network stations (2000– 2009) superimposed on modelsimulated ozone concentration from the Monitoring Atmospheric Composition and Climate reanalysis (2003–2010). Monthly mean for July. (Source: GAW Report No. 209, 2013)

- Powerful oxidant, can impair the functioning of the human respiratory and cardiovascular systems
- Ozone pollution can affect the main ecosystem services provided by terrestrial plants
- Many countries have implemented ozone air quality standards for the protection of human health
- Role in climate

### Ozone cross section at 254 nm (air)

### Why is accuracy important?

- Comparable and accurate measurements of atmospheric ozone concentrations essential for human health and the environment
- Prevalence of standards and instruments based on the absorption of UV radiation at the mercury-line wavelength of 253.65 nm (air) for amount fraction measurements of surface ozone
- The uncertainty in the value of the ozone absorption cross-section per molecule is the biggest impediment to achieving accurate and SI-traceable values from ozone reference photometers that are useful to end users
- The value is an important anchor point for referencing the absorption cross-sections of ozone throughout the electromagnetic spectrum

### Why change?

- Ozone cross-section data (at 254 nm) suggests that historical data is biased by about 2%, confirmed by non-UV absorption measurements (Gas Phase titration)
- Recommendations of ACSO change consistent with expected changes in values at other wavelengths

## **CCQM** task group

Traceability for surface ozone measurements is established through ozone reference photometers, and the GAWG is the expert body in CCQM to recommend values for use in BIPM.QM-K1

- Established under the CCQM Gas Analysis Working Group
- Recommend SI-traceable value and uncertainty for O<sub>3</sub> cross section at 253.65 nm (air)
- Compare, evaluate, and review O<sub>3</sub> absorption cross section data in the scientific literature
- Assess completeness of the uncertainty budgets and quantify possible biases in published values
- Scientifically rigorous strategy to yield the recommended cross section and combined uncertainty
- Summarise results in an appropriate peer-reviewed journal
- Inform CCQM-GAWG regarding the recommended value for use in future BIPM.QM-K1 comparisons



### **CCQM** task group



Hearn A. G., Proc. Phys. Soc. 78, 932-940 (1961)
 WMO/GAW No. 218, Absorption Cross Sections of Ozone (ACSO) Status Report, (2015)

## **CCQM** task group

### Paper published in Metrologia

Metrologia



#### PAPER • OPEN ACCESS

Recommendation of a consensus value of the ozone absorption crosssection at 253.65 nm based on a literature review

To cite this article: J T Hodges et al 2019 Metrologia 56 034001

#### OPEN ACCESS IOP Publishing Metrologia 56 (2019) 034001 (1200

### Recommendation of a consensus value of the ozone absorption cross-section at 253.65 nm based on a literature review

#### J T Hodges<sup>1</sup>©, J Viallon<sup>2,1</sup><sup>0</sup>©, P J Brewer<sup>2</sup>©, B J Drouin<sup>4</sup>, V Gorshelev<sup>5</sup>, C Janssen<sup>6</sup>O, S Lee<sup>7</sup>O, A Possolo<sup>1</sup>O, M A H Smith<sup>8</sup>O, J Walden<sup>9</sup> and R I Wielgosz<sup>2</sup>

- <sup>1</sup> National Institute of Standards and Technology (NIST), Gaithersburg, MD, United States of America
- <sup>2</sup> Bureau International des Poids et Mesures (BIPM), Sèvres, France
- <sup>3</sup> National Physical Laboratory (NPL), Teddington, Middlesex, United Kingdom <sup>4</sup> Jet Propulsion Laboratory, NASA, California Institute of Technology, Pasadena, CA,
- \* Jet Propulsion Laborator United States of America

Abstract

- <sup>5</sup> Institute of Environmental Physics, Bremen University, Bremen, Germany
- <sup>6</sup> LERMA-IPSL, Sorbonne Université, Observatoire de Paris, PSL Université, CNRS, Paris, France
- 7 Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
- 8 NASA Langley Research Center, Hampton, VA, United States of America
- 9 Finnish Meteorological Institute (FMI), Helsinki, Finland

#### E-mail: jviallon@bipm.org (J Viallon)

Received 19 October 2018, revised 14 February 2019 Accepted for publication 1 March 2019 Published 4 April 2019



A detailed review and analysis of literature values for the absorption cross-section of ozone at room temperature at the mecruy-line avvelength (23.3 Gsn, air) is reported. Data from fourteen independent sets of measurements spanning the years 1959–2016 were considered. The present analysis is based upon a revised assessment of all Type A and Type B uncertainty components for each previously reported cross-section. A consensus value for the absorption cross-section of 1.1329(35) × 10<sup>-17</sup> cm<sup>2</sup> molecule<sup>-1</sup> is recommended based on statistical analysis of the weighted data. This new cross-section value is 1.23% lower and its uncertainty sixfold smaller than the uncertainty of the conventionally accepted reference value reported by Hearn (1961 *Proc. Phys. Soc.* 78 932–40).

Keywords: ozone, absorption cross-section, reference data, troposphere

S Supplementary material for this article is available online

(Some figures may appear in colour only in the online journal)

### CCQM-20/30 Recommendation document approved by the CCQM in September

- The 2019 value of 1.1329 x 10-17 cm<sup>2</sup> and standard uncertainty 0.0035 x 10-17 cm<sup>2</sup> be adopted for the ozone absorption cross-section per molecule at 253.65 nm (air) for use in ozone measurement standards maintained at the BIPM and for the calculation of the reference value for the BIPM.QM-K1 on-going comparison of surface ozone measurement standards
- The BIPM and the NMIs work with the atmospheric monitoring community and other stakeholders towards a global implementation of the 2019 value
- The date of implementation of the 2019 value for the ozone absorption cross-section per molecule at 253.65 nm (air) be decided after consultation with stakeholder communities

### **Workshop Aims**

To develop a plan and timetable for a globally coordinated and universal implementation of the ozone absorption cross-section value at 253.65 nm, published in 2019, for the measurement of surface ozone concentrations around the world.

### **Open sessions**

5 October Surface Ozone Measurements and its Impact
6 October International Standards, Calibration Services and Monitoring Networks
7 October Air Quality Normative Aspects, Ozone Analyser Manufacturing

### Task groups

| 1 Identifying and implementing change                                                       | 2 Time line for change                                                                            |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| How do we clearly identify the change being made?                                           | How much time is required to prepare for change?                                                  |
| Will a change be mandatory or voluntary?                                                    | What is a reasonable implementation date and schedule?                                            |
|                                                                                             |                                                                                                   |
| 3 Communicating change                                                                      | 4 Managing change                                                                                 |
| <b>3 Communicating change</b><br>How do we best publicise the change and its date/schedule? | <b>4 Managing change</b><br>How do we best identify risks in making the change and mitigate them? |

# 8 October Breakout Sessions for Task Groups9 October Feedback from Task Groups, Conclusions and Recommendations

# †||CCQM





# Accurate Monitoring of Surface Ozone Virtual Workshop 5-9 October 2020

### **Acknowledgements**

### CCQM-GAWG Ozone Task Group

J T Hodges (NIST) | J Viallon (BIPM) | R I Wielgosz (BIPM) | S Lee (KRISS) | P J Brewer (NPL) | J Walden (FMI) | A Possolo (NIST) | V Gorshelev (IUP-Bremen) | C Janssen (Observatoire de Paris) |M A H Smith (NASA) | B J Drouin (JPL)

### Workshop Steering Committee Members

P Brewer (NPL) | J Viallon (BIPM) | R.I. Wielgosz (BIPM) | S. Lee (KRISS) | I Chubchenko (VNIIM) | J Carney | J.T. Hodges | J Norris (NIST) | K Saarnio (FMI) | N Ntsasa (NMISA) | A Borowiak (JRC)