Asia Network of surface ozone monitoring – Japan, East Asia, and beyond...

Hiroshi Tanimoto, Shigeru Hashimoto, Hitoshi Mukai National Institute for Environmental Studies (NIES), Japan Takuya Shimosaka National Metrology Institute of Japan (NMIJ), Japan

NIES's ozone standard activity since 2002

- The major objectives were to:
 - i. pursue reliable reference standards (i.e. SRP vs. GPT),
 - ii. achieve international comparability (with BIPM and NIST),
 - iii. establish regional traceability network for field studies,
 - iv. make/maintain a traceability system in Japan (with MOE-J),
 - v. act as a reference center for some monitoring networks,
 - vi. discuss an opportunities/challenges to be a national reference/calibration center in Japan (with NMIJ)

for ozone, one of the most "environmentally" important trace gases in the troposphere from local to global perspective.

Since its beginning...

2002 2003	• NIES GPT vs. NIST SRP #2 "informal" intercomparison
2004 April	 NIST SRP #35 delivery and deployment at NIES Improvement in NIES GPT system
July	 International comparison for national ozone standards at BIPM (CCQM-P28)
2005	
January	 NIES GPT vs. NIST SRP #35 comparison
March	 International intercomparison during ABC Gosan campaign at Jeju Island, Korea
2006	 Building traceability network in Japan for air quality monitoring by Ministry of Environment, Japan
	• NIST SRP #47 delivery and deployment at NIES

In 2004, four SRPs in Asia

Surface O₃ monitoring networks in East Asia

ABC-East Asia campaign

- Regional traceability network is to be established to detect possible changes in current and future air quality in East Asia
- O₃ instruments UV photometry are welldesigned
 - same method, but different manufacturer/model (e.g., Dasibi, TEI, Horiba, 2B Tech, ...)
- Major effort is:
 - to establish calibration/correction criteria within ABC
 - to make linkage with other groups/networks (GAW, etc)

Intercomparison outline

- Regional traceability network is to be established to detect possible changes in current and future air quality in East Asia
- Major effort is:
 - to establish calibration/correction criteria within ABC
 - to make linkage with other groups/networks (GAW, etc)

SRP-based linkage with other programs

GAW sites

Surface O₃ monitoring networks in East Asia

Japan's operational monitoring network, Ministry of Environment, Japan

Japan's traceability system/network, 1970-2000s

- 42/47 local governments used the KI method for calibration of ozone monitors
- The KI method had a wide range of sensitivity and higher average (10%) than that of the UV method

Japan's traceability system/network, 2010s

- Five-layer-"top down" traceability system based on SRP 35/47
- SRP-vs.-secondary standard comparisons are made annually
- Secondary-vs.-tertiary standard comparisons are made twice a year (before/after photochemical smog season)

Japan's traceability system/network, 2010s

Stability of 7 secondary standards, 2010-2019

Stability of tertiary standards, 2010-2019

1.02 1.00 0.98 0.96

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Comparisons of tertiary vs. secondary standards

- Majority of tertiary standards are within 1% (slope) and 1 ppb (intercept) in reference to secondary standards
- Some are outside of these ranges

NIES SRP works as a reference for Indonesian sites

Credit: Hitoshi Mukai, Shigeru Hashimoto

In 2020, eighteen(!!) SRPs in Asia

Summary

- In Asia, the capacity of ozone standards as well as ambient monitoring has shown a great progress over the past decade, in both quality and quantity
- In East Asia, there were "research-level" efforts of coordination to make sure of regional traceability, and this helped assure a comparability of ozone monitoring data, including WMO-GAW and EANET
- These efforts were mainly for East Asia, not for the rest of Asia
- As a joint NIES-MOE-Japan efforts, Japan established a traceability system for operational monitoring network and it is working quite well
- The current style is rather a "grass-roots" type, so whether we should move to more "top-down" style of intercomparison, traceability system, or regional coordination exercise (in addition to CCQM) is the next question to be discussed among stakeholders from metrology, environment, and meteorology communities
- It seems that there are no substantial efforts on ozone standards in APMP (Asia Pacific Metrology Programme), though there are some on standards of other gaseous air pollutants

Stability of SRP35 & 47 against SRP 2

- Comparisons were made in 2004, 2008, 2013, 2015, and 2020 (every 2-4 years)
- The sensitivity changes are within 0.1%

CCQM-P28 results

degrees of equivalence - slopes

Pursuing reliable standards

(SRP35-GPT)/GPT (%)

Tanimoto et al., J. Geophys. Res., 2006 22