

Non-destructive detection for strontium optical lattice clocks: towards a lattice clock in the quantum regime

G. Vallet, S. Bilicki, E. Bookjans, R. Le Targat, and Jérôme Lodewyck

Systèmes de Référence Temps-Espace

1 Optical lattice clocks

2 Beyond the quantum projection noise

3 Non-destructive detection

OPTICAL LATTICE CLOCKS

- Atoms loaded from a MOT to an optical lattice formed by a 1D standing wave
- Probing a narrow optical resonance with an ultra-stable "clock" laser
- Stabilize the clock laser on the narrow resonance

OPTICAL LATTICE CLOCKS

- Atoms loaded from a MOT to an optical lattice formed by a 1D standing wave
- Probing a narrow optical resonance with an ultra-stable "clock" laser
- Stabilize the clock laser on the narrow resonance

Combine several advantages:

- Optical clock
- Large number of atoms (10⁴)
- Lamb-Dicke regime insensitive to motional effects

- Magic wavelength for unperturbed trapping
- Developed in many laboratories (Sr)
- ⇒ good candidates for a new SI second

STRONTIUM OPTICAL LATTICE CLOCKS AT SYRTE

SR1

$\operatorname{Sr2}$

STRONTIUM OPTICAL LATTICE CLOCKS AT SYRTE

SR1

SR2

STRONTIUM OPTICAL LATTICE CLOCKS AT SYRTE

Sr1

SR2

STABILITY

Effect Correction Uncertainty Black-body radiation shift 5208 20 Quadratic Zeeman shift 1317 12 Lattice light-shift -3020 Lattice spectrum 1 0 8 Density shift 0 Line Pulling 0 20 Probe light-shift 0.4 0.4 AOM phase chirp -88 Servo error 3 0 1.5 Static charges Black-body radiation oven 10 Background collisions 8 6487.4 Total 41

ACCURACY (in 10^{-18})

 First agreement between two OLCs with an uncertainty beyond the accuracy of microwave clocks

$$\begin{array}{l} {\mathsf{Sr}}_2 \operatorname{-} {\mathsf{Sr}}_1 = \\ 1.1 \times 10^{-16} \pm 2 \times 10^{-17} ({\mathsf{stat}}) \pm 1.6 \times 10^{-16} ({\mathsf{sys}}) \end{array}$$

Repeated agreement: ${\rm Sr}_2$ - ${\rm Sr}_1 = (2.3 \pm 7.1) \times 10^{-17}$

P. Delva et al., Phys. Rev. Lett. **118**, 221102 (2017) J. Lodewyck et al., Metrologia **53**, 1123 (2016) R. Tyumenev et al., New Journal of Physics, **18** 113002 (2016) C. Lisdat et al., Nat. Comm. **7** 12443 (2016) R. Le Targat et al. Nat. Comm. **4** 2109 (2013)

- First agreement between two OLCs with an uncertainty beyond the accuracy of microwave clocks
- Record absolute frequency measurement by comparing with Cs and Rb microwave fountains

- P. Delva et al., Phys. Rev. Lett. 118, 221102 (2017)
 - J. Lodewyck et al., Metrologia 53, 1123 (2016)
- R. Tyumenev et al., New Journal of Physics, 18 113002 (2016)
 - C. Lisdat et al., Nat. Comm. 7 12443 (2016)
 - R. Le Targat et al. Nat. Comm. 4 2109 (2013)

- First agreement between two OLCs with an uncertainty beyond the accuracy of microwave clocks
- Record absolute frequency measurement by comparing with Cs and Rb microwave fountains
- Continuous operation of two Sr clocks over periods up to 3 weeks

101	-2.1 -2.2 Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10	
error/	23 24 24	Link of	dillo	ومليا لمغط	Hillioble	والمنافي	الله عار	مالانت	مسافلاته	فالللا	
relativ	25 Juni N	Among	الدر		Innorth						
Planer	-2.7 -2.8 (Authorited)	and a links	44.4	dan bit	dataa	a di sua	an	and a	6.15 1.18	an a	1

P. Delva et al., Phys. Rev. Lett. **118**, 221102 (2017) J. Lodewyck et al., Metrologia **53**, 1123 (2016) R. Tyumenev et al., New Journal of Physics, **18** 113002 (2016) C. Lisdat et al., Nat. Comm. **7** 12443 (2016) R. Le Targat et al. Nat. Comm. **4** 2109 (2013)

67% to 92% uptime

- First agreement between two OLCs with an uncertainty beyond the accuracy of microwave clocks
- Record absolute frequency measurement by comparing with Cs and Rb microwave fountains
- Continuous operation of two Sr clocks over periods up to 3 weeks
- Optical to optical clocks comparison with a Hg OLC

 $\begin{array}{l} {\sf Hg/Sr} = 2.62931420989890915 \\ \pm 5 \times 10^{-17} ({\sf stat}) \pm 1.7 \times 10^{-16} ({\sf sys}) \end{array}$

P. Delva et al., Phys. Rev. Lett. **118**, 221102 (2017) J. Lodewyck et al., Metrologia **53**, 1123 (2016) R. Tyumenev et al., New Journal of Physics, **18** 113002 (2016) C. Lisdat et al., Nat. Comm. **7** 12443 (2016) R. Le Targat et al. Nat. Comm. **4** 2109 (2013)

- First agreement between two OLCs with an uncertainty beyond the accuracy of microwave clocks
- Record absolute frequency measurement by comparing with Cs and Rb microwave fountains
- Continuous operation of two Sr clocks over periods up to 3 weeks
- Optical to optical clocks comparison with a Hg OLC
- First international comparison between optical clocks → all optical comparison with phase compensated fibre links

PTB, LPL and SYRTE established a 1415 km long optical fibre link and performed in 2015 the first direct comparison of optical clocks at continental scale

P. Delva et al., Phys. Rev. Lett. **118**, 221102 (2017) J. Lodewyck et al., Metrologia **53**, 1123 (2016) R. Tyumenev et al., New Journal of Physics, **18** 113002 (2016) C. Lisdat et al., Nat. Comm. **7** 12443 (2016) R. Le Tareat et al. Nat. Comm. **4** 2109 (2013)

 $\begin{array}{l} \mbox{Statistical uncertainty 2×10^{-17} after $\simeq1$ hour 150 hours of data $$r_{\rm PTB}/Sr_{\rm SYRTE}-1=(4.7\pm5.0)\times10^{-17}$ \end{array}$

- First agreement between two OLCs with an uncertainty beyond the accuracy of microwave clocks
- Record absolute frequency measurement by comparing with Cs and Rb microwave fountains
- Continuous operation of two Sr clocks over periods up to 3 weeks
- Optical to optical clocks comparison with a Hg OLC
- First international comparison between optical clocks → all optical comparison with phase compensated fibre links
- Bounds on tests of Local Lorentz Invariance with remote clock comparisons (with LPL, PTB and NPL)

correction to relativity: $|\alpha| < 10^{-8}$

P. Delva et al., Phys. Rev. Lett. **118**, 221102 (2017) J. Lodewyck et al., Metrologia **53**, 1123 (2016) R. Tyumenev et al., New Journal of Physics, **18** 113002 (2016) C. Lisdat et al., Nat. Comm. **7** 12443 (2016) R. Le Targat et al. Nat. Comm. **4** 2109 (2013)

- First agreement between two OLCs with an uncertainty beyond the accuracy of microwave clocks
- Record absolute frequency measurement by comparing with Cs and Rb microwave fountains
- Continuous operation of two Sr clocks over periods up to 3 weeks
- Optical to optical clocks comparison with a Hg OLC
- First international comparison between optical clocks → all optical comparison with phase compensated fibre links
- Bounds on tests of Local Lorentz Invariance with remote clock comparisons (with LPL, PTB and NPL)
- First contribution to TAI with optical clocks

2 - Duratio	on of the TAI	scale i	nterval	d.								
Table 1: E All values	stimate of d i are expresses	oy indiv 1 in 10×	idual F X-15 ar	SFS mean of are vi	surem slid :	ents and anly for	corresp the sta	conding uncertainted period of e	nties. stimatio	a.		
Standard	Period of Estimation	đ	u.t.	uill ui	L/Lab	ul/Tai		uSrep Ref(uS)	Ref(uB)	ul(Ref)	Steer	Note
PTB-CS1 PTB-CS2 SYRTE-F03 SYRTE-F05 SYRTE-SR3 SYRTE-SR3 SYRTE-SR3 SYRTE-SR8 PTB-CSF2	\$1784 \$7889 \$1784 \$7889 \$1784 \$7889 \$1784 \$7889 \$1784 \$7889 \$105 \$1784 \$7889 \$1078 \$2889 \$1079 \$7199 \$1469 \$7479 \$1529 \$7554 \$1529 \$7554 \$1779 \$7889	-18.71 -0.20 -1.20 -0.91 0.81 0.46 -1.29 -1.24 -1.22 -1.26	4.00 2.00 0.40 0.20 0.20 0.20 0.20 0.25 0.25 0.25 0.2	8.00 12.00 0.22 0.29 0.04 0.04 0.04 0.05 0.20	0.00 0.11 0.11 0.10 0.10 0.11 0.11 0.11	0.15 0.22 0.22 0.22 0.28 0.28 0.29 0.27 0.27 0.27 0.13	10.00 12.21 0.49 0.49 0.26 0.26 0.42 0.42 0.42 0.45	PFS/NA PFS/NA PSS/NA 0.5 [1] 0.5 [1] 0.5 [1] 0.5 [1] 0.5 [1] 0.5 [1] 0.5 [1]	T148 T148 T201 T228 [2] [2] [2] [2] [2] [2]	8. 12. 0.23 0.34 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.41	********	(1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2
Notes: (1) Continu (2) Report (2) Report (4) Report (1) CIPM Re des Sec (2) Optical Bilick:	usuely operat: #3 MAR, 2017 16 AUG, 2016 #03 MAR, 2017 ecomendation ances du Comit 1 to micromave 1 S., Bookjam	ing at a by LNE- by LNE- by PTB 3 (CI-3 te Inter t clock 1 E., Ro	clack SVRTE SVRTE 015) : nations frequer byr J.L	partici Updates il des Pr icy ratio	to ti sids - s w2	a to TAI he list : et Mesur th a nea allet G.	of stand Hs, 104t Tly cost , Le Tar	tard frequencies h meeting (2015 inwoos strontis qut R., Nicoloo	in Proc), 2016, m optica 1 D., Le	es-Verba 47 p. 1 lattic Coq Y.,	ux e cloci Guéna	k. Lodewyc J., Abgra

Included in Circular T 350 (Feb. 2017) as a non-steering contribution

- P. Delva et al., Phys. Rev. Lett. 118, 221102 (2017)
 - J. Lodewyck et al., Metrologia 53, 1123 (2016)
- R. Tyumenev et al., New Journal of Physics, 18 113002 (2016)
 - C. Lisdat et al., Nat. Comm. 7 12443 (2016)
 - R. Le Targat et al. Nat. Comm. 4 2109 (2013)

1 Optical lattice clocks

2 Beyond the quantum projection noise

3 Non-destructive detection

QUANTUM PROJECTION NOISE: STATISTICAL MODEL

ATOMIC RESONANCE

Each atom answers |f
angle or |e
angle (projection of the wave packet) \Rightarrow SNR $\simeq 1$

QUANTUM PROJECTION NOISE: STATISTICAL MODEL

ATOMIC RESONANCE

Each atom answers $|f\rangle$ or $|e\rangle$ (projection of the wave packet)

 \Rightarrow SNR $\simeq 1$

SOLUTIONS:

- Increase the number of particles $N \Rightarrow \sqrt{N}$ improvement
- Increase the integration time $\tau \Rightarrow \sqrt{\tau/T_c}$ improvement

Quantum projection noise limited frequency instability

$$\sigma_y(au)\simeq rac{1}{\pi Q}rac{1}{\sqrt{N}}\sqrt{rac{T_c}{ au}}, \qquad {\scriptscriptstyle Q\,=\, ext{quality factor}}$$

J. Lodewyck — Non-destructive detection for Sr optical lattice clocks – The Quantum Revolution in Metrology 2017/09 7/19

QUANTUM PROJECTION NOISE IN CLOCKS

MICROWAVE ATOMIC FOUNTAINS

OPTICAL ION CLOCKS

OPTICAL LATTICE CLOCKS

- QPN limit: $\sigma_y(au) = a$ few $10^{-14}/\sqrt{ au}$
- Experimentally realized

- $Q = a \text{ few } 10^{14}, N = 1$
- QPN limit: $\sigma_y(au) = 10^{-15}/\sqrt{ au}$
- Experimentally realized

- Q = a few 10^{14} , $N = 10^4$
- QPN limit: $\sigma_y(\tau) = 10^{-17}/\sqrt{ au}$
- Experiments limited at $\sigma_y(\tau) = 10^{-16}/\sqrt{\tau}$ by technical noise (Dick effect)

J. Lodewyck — Non-destructive detection for Sr optical lattice clocks – The Quantum Revolution in Metrology 2017/09 8/19

QUANTUM PROJECTION NOISE IN CLOCKS

MICROWAVE ATOMIC FOUNTAINS

- Q = a few 10^{14} , $N = 10^4$
- QPN limit: $\sigma_y(au) = 10^{-17}/\sqrt{ au}$
- Experiments limited at $\sigma_y(\tau) = 10^{-16}/\sqrt{\tau}$ by technical noise (Dick effect)

J. Lodewyck — Non-destructive detection for Sr optical lattice clocks – The Quantum Revolution in Metrology 2017/09 8/19

Two level atom

N two level atoms

 $N \frac{1}{2}$ -SPINS

- $[J_1, J_2] = iJ_3 \simeq i\frac{N}{2}$
- $\bullet \Rightarrow \Delta J_1 \, \Delta J_2 \geq \frac{N}{4}$
- Similar to $[X, P] = i\hbar$ systems
 - Quantum harmonic oscillator
 - Quantum optics

QUANTUM PROJECTION NOISE

Symmetric uncertainty area

$$\Delta J_1 = \Delta J_2 = \sqrt{\frac{N}{4}}$$

• SNR =
$$\frac{N/2}{\sqrt{N/4}} = \sqrt{N}$$
 (QPN)

- $[J_1, J_2] = iJ_3 \simeq i\frac{N}{2}$
- $\bullet \Rightarrow \Delta J_1 \, \Delta J_2 \geq \frac{N}{4}$
- Similar to $[X, P] = i\hbar$ systems
 - Quantum harmonic oscillator
 - Quantum optics

 $[J_1, J_2] = iJ_3 \simeq i\frac{N}{2}$

- $\bullet \Rightarrow \Delta J_1 \, \Delta J_2 \geq \frac{N}{4}$
- Similar to $[X, P] = i\hbar$ systems
 - Quantum harmonic oscillator
 - Quantum optics

QUANTUM PROJECTION NOISE

Symmetric uncertainty area

$$\Delta J_1 = \Delta J_2 = \sqrt{\frac{N}{4}}$$

• SNR
$$= \frac{N/2}{\sqrt{N/4}} = \sqrt{N}$$
 (QPN)

Spin squeezing

- Asymmetric uncertainty area
- $\bullet \Delta J_2 < \Delta J_1$

- $\bullet [J_1, J_2] = iJ_3 \simeq i\frac{N}{2}$
- $\bullet \Rightarrow \Delta J_1 \, \Delta J_2 \geq \frac{N}{4}$
- Similar to $[X, P] = i\hbar$ systems
 - Quantum harmonic oscillator
 - Quantum optics

QUANTUM PROJECTION NOISE

Symmetric uncertainty area

$$\Delta J_1 = \Delta J_2 = \sqrt{\frac{N}{4}}$$

• SNR =
$$\frac{N/2}{\sqrt{N/4}} = \sqrt{N}$$
 (QPN)

Spin squeezing

- Asymmetric uncertainty area
- $\bullet \Delta J_2 < \Delta J_1$
- Limit: $\Delta J_1 \simeq N \rightarrow \Delta J_2 \simeq 1$ \Rightarrow SNR $\simeq N$ (Heisenberg limit)

How to achieve spin squeezing

- Non-linear evolution (cavity back-action, interactions,...)
- Weak QND measurement

How to achieve spin squeezing

- Non-linear evolution (cavity back-action, interactions,...)
- Weak QND measurement

How to achieve spin squeezing

- Non-linear evolution (cavity back-action, interactions,...)
- Weak QND measurement

Subsequent measurement correlated

How to achieve spin squeezing

- Non-linear evolution (cavity back-action, interactions,...)
- Weak QND measurement

1 QPN limited measuremen	t
--------------------------	---

- 2 Subsequent measurement correlated
- 3 Design a protocol to acheive a sub-QPN resolution

How to achieve spin squeezing

- Non-linear evolution (cavity back-action, interactions,...)
- Weak QND measurement

REQUIREMENTS	3
--------------	---

- low detection noise $(SNR \ll \sqrt{N})$
- low information loss ($n_\gamma \ll 1$)

- QPN limited measurement
 Subsequent measurement correlated
 - B Design a protocol to acheive a sub-QPN resolution

\Rightarrow high resolution non-destructive detection

How to achieve spin squeezing

- Non-linear evolution (cavity back-action, interactions,...)
- Weak QND measurement

REQUIREMENTS

• low detection noise $(SNR \ll \sqrt{N})$

 \Rightarrow high resolution non-destructive detection

Design a protocol to acheive a sub-QPN resolution

QPN limited measurement Subsequent measurement correlated

- low information loss $(n_{\gamma} \ll 1)$ CLASSICAL NON-DESTRUCTIVITY
 - Low photon scattering \Rightarrow atoms stay trapped
 - Atoms recycle \Rightarrow less dead time in the clock cycle \Rightarrow reduced Dick effect

3

1 Optical lattice clocks

2 Beyond the quantum projection noise

3 Non-destructive detection

Measuring p with Sr atoms

$$P_{1} \xrightarrow{1} P_{1} \xrightarrow{3} P_{0} = |e\rangle$$
cooling, 461 nm
$$Clock, 698 nm$$

$$1S_{0} = |f\rangle$$

Probing the ${}^{1}S_{0} \rightarrow {}^{1}P_{1}$ transition: measure of $N_{|f\rangle}$

$$p = 1 - rac{N_{ ext{total}}}{N_{|f
angle}}$$

USUAL SCHEME: FLUORESCENCE DETECTION

Fluorescence detection
Lost information
Automation
Automatio

- \blacksquare Low efficiency \Rightarrow powerful probe beam
- Destructive detection: the atoms are scattered and lost $(n_{\gamma} \gg 1)$

USUAL SCHEME: FLUORESCENCE DETECTION

- \blacksquare Low efficiency \Rightarrow powerful probe beam
- Destructive detection: the atoms are scattered and lost $(n_{\gamma} \gg 1)$

NON-DESTRUCTIVE DISPERSIVE DETECTION

■ Phase shift ⇒ low power probe beam

USUAL SCHEME: FLUORESCENCE DETECTION

Fluorescence detection

Lost information

- Low efficiency \Rightarrow powerful probe beam
- Destructive detection: the atoms are scattered and lost $(n_{\gamma} \gg 1)$

NON-DESTRUCTIVE DISPERSIVE DETECTION

■ Phase shift ⇒ low power probe beam

- SNR fundamentally limited by the light shot noise
- Classical non-destructivity
- Quantum non-destructivity: no information loss

NON-DESTRUCTIVE DETECTION

CHALLENGE

 discriminate technical noises from the atomic signal

DESIGN

- Bi-chromatic cavity 813 nm + 461 nm
 ⇒ lattice and detection aligned
- High finesse (16 000) at 461 nm
 ⇒ 100 fold increase of the SNR
- Dual mode injection
 - \Rightarrow Immune to technical fluctuations (cavity, laser)
 - \Rightarrow Homogeneous atom-cavity coupling
- Heterodyne, PDH-like, detection ⇒ close to the shot noise limit

EXPERIMENTAL RESULTS

DETECTION SIGNAL

- \blacksquare Dynamic range of \simeq 500 atoms
- Scattering rate well modeled
- Immunity to technical noises demonstrated

EXPERIMENTAL RESULTS

Detection noise δN

- $\delta N = 23 \text{ atoms} / \sqrt{n_{\gamma}}$
- Classical non-destructive regime $\delta N = 3.7$ atoms for $n_{\gamma} = 38$ photons \Rightarrow high resolution
- Quantum non-destructive regime $\delta N > 23$ atoms for $n_{\gamma} < 1$ photon $\Rightarrow \delta N < \sqrt{N}$ for N > 530 atoms.

DETECTION SIGNAL

- \blacksquare Dynamic range of \simeq 500 atoms
- Scattering rate well modeled
- Immunity to technical noises demonstrated

REQUIREMENTS FOR A CLOCK DETECTION IN THE QUANTUM REGIME

- High SNR (cavity assisted)
- Low destructivity
- Homogeneous coupling
- Robust for operating in a state-of-the-art optical clock

PROSPECTS

- Classical non-destructivity for an improved frequency stability
- Demonstrate quantum correlations (technical issues for a low scattering)
- Overcome the QPN limit for the frequency stability

Post-doc position available