

Challenges in maintaining

S. Assonov, M. Gröning and A. Fajgelj, International Atomic Energy Agency (IAEA)

the artefact-based carbon stable isotope scale.

Ρ

CCQM Workshop on "Advances in Metrology in Chemistry and Biology", 9-10 April, 2019

Relative, artefact-based VPDB δ^{13} C scale

(Vienna PeDee Belemnite scale, based on isotope ratios):

 $\delta^{13}C = [(^{13}C/^{12}C)_{\text{Sample}}/(^{13}C/^{12}C)_{\text{VPDB}} - 1]$

The IAEA - custodian of primary RMs:

- Primary standards (artefacts) are used to establish the entire calibration scheme for stable isotope ratios as delta-values, similar to former prototypes of *kilogram* and *meter*. Example: VPDB scale for δ^{13} C and δ^{18} O, with isotope ratios fixed to the (hypothetical) VPDB-artefact. • Realization: The <u>primary RMs</u> distributed by
- the IAEA to end-users, with their lowest

History of the VPDB δ^{13} C scale:

1957: Only one RM defining the scale

- possible uncertainty.
- Other RMs (secondary) characterised directly against primary RMs.

Crucial requirements for δ^{13} C-RMs:

- Need for long-term stability (decade-long monitoring programs),
- Low uncertainty data demanded by atmosphere monitoring community.

Low uncertainty of data => low uncertainty RMs required

Component	Compatibility goal	Extended compatibili goal	Range in unpollutec ty troposphere
CO2	± 0.1 ppm (Northern hemisphere) ± 0.05 ppm (South, hemisphere)	± 0.2 ppm	360 - 450 ppm
CH₄	± 2 ppb	± 5 ppb	1700 – 2100 ppb
00	± 2 ppb	± 5 ppb	30 – 300 ppb
N ₂ O	± 0.1 ppb	± 0.3 ppb	320 – 335 ppb
SF ₆	± 0.02 ppt	± 0.05 ppt	6 – 10 ppt
H ₂	± 2 ppb	± 5 ppb	450 – 600 ppb
δ ¹³ C-CO ₂	± 0.01‰	± 0.1‰	-7.5 to -9‰ vs. VPDB
δ ¹⁸ Ο-CO ₂	± 0.05‰		
Δ ¹⁴ C-CO ₂	± 0.5‰	17 th	WMO/IAFA Meeting on Carbon Dioxic
∆¹4C-CH₄	± 0.5‰	Oth	or Greenhouse Gases and Balated Trace
Δ ¹⁴ C-CO	± 2 molecules cm ⁻³	Massurement Tashnigung (CCMT 2012)	
δ ¹³ C-CH ₄	± 0.02‰	IVIea	asurement reconiques (GGIVII-2013)
δD-CH₄	± 1‰	(Beijir	ng, China, 10-13 June 2013)
O ₂ /N ₂	± 2 per meg		

Example of CO₂ & δ^{13} C(CO₂) in background air, data by NOAA/INSTAR.

2011-2016: Work on the replacement of NBS19

IAEA-603

2015: LSVEC-problem, drift is found for δ^{13} C of LSVEC (data scatter ~0.35 ‰)

What is next: (i) need for introducing replacement material(s) for 2-point data normalization, (ii) developing new RMs optimized in terms of their uncertainty; (iii) potential revision of the VPDB scale realization.

Proposed realisation with several anchors:

Realization model being similar to the temperature scale realization ITS-90. It includes definition, primary RM + several well-characterized scale-anchors of high quality:

- Definition-level: NBS19 (historical artefact, defining the VPDB scale)
- **Realization:**
 - IAEA-603, primary RM distributed to end-users (and NBS19A reserved to verify any drift),
 - scale-anchors: three new carbonate RMs under characterization at the IAEA,
 - NIST CO₂ RMs (nearly exhausted), to be used to verify consistency of new RMs,
 - new CO₂ RMs (planned at the IAEA),

Note: other RMs can be developed (e.g. USGS44 being under development at USGS).

Each additional measurement step increases the combined uncertainty. Note, RM producers have the same instruments as end-users. **Q:** how to optimise new RMs and the scale realization scheme?

Advantages:

- One can select RMs (carbonates or CO₂) and δ^{13} C- δ^{18} O values suitable for applications,
- The ¹⁷O correction applied by users to the raw data can be verified,
- Drift of RMs (if any) is easier to be detected by cross-measurements among.