Development of a New Certified Reference Material, NMIJ CRM 4229-a, for Determination of Trace Water Content in Liquids

Shinsuke Inagaki, Toshihiro Suzuki, Toshiaki Asakai, Masahiko Numata, Nobuyasu Hanari National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST)

2. CRMs for water content supplied

1. Introduction

4. Sample handling

Attach a silica gel tube into the cap.

Rinse a gas-tight syringe with ca. 1 mL of

Take ca. 6.5 mL of the CRM carefully to avoid

minutes.

immediately.

the CRM adequately.

electrolytic cell.

Apparatus

end point

Current

Generator electrolyte

Interval time for the detection

Automatic BG correction

Counter electrolyte

Sample amount

Minimum count

the formation of air bubbles

Weigh the syringe using a balance.

Inject ca. 1.5 mL of the aliquot into the

Weigh the syringe again using a balance.

Shake the ampule gently and stand for a few

Open the ampule and attach the rubber cap

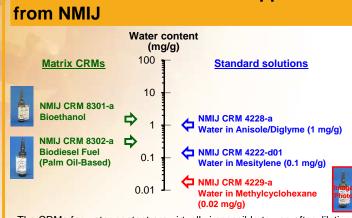
The accurate determination of water content is essential for the quality control of pharmaceuticals, petroleum products, chemical reagents, food products, advanced materials *etc.* In recent years, in the fields of fine chemicals and electric and electronic materials, particularly for synthetic organic materials and battery materials, the water content as impurities should be maintained at levels much lower than ever before. To ensure reliable measurements, certified reference materials (CRMs) for determination of water contents, which are traceable to the International System of Units (SI), are required. National Metrology Institute of Japan (NMIJ) has issued a CRM, Water in Methylcyclohexane (0.02 mg/g) for use in quality control of trace water analyses in liquids.

Silica ge

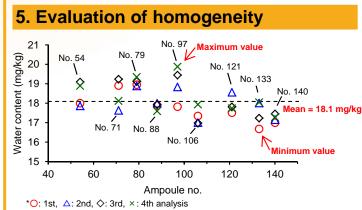
Rubber

Repeat the procedures

and analyze 4 times.


cap

AQ-2200 (Hiranuma Sangyo)


Aqualyte CN (Kanto Chemical)

Aqualyte GRO-A (Kanto Chemical)

tube

The CRMs for water content are virtually impossible to use after dilution since they are affected by water contained in the diluent and water absorption and/or desorption during preparation. Therefore, these CRMs at each required concentration level must be supplied.

✓ Ampoule no. 54 to no. 140 were used as the final candidate material.
→ ANOVA was used to analyze the concentration differences among the bottles. The between-bottle variance was significant (*p* < 0.05). However, s_{bb} was much smaller than the uncertainty due to other factors.

- → The candidate was deemed sufficiently homogeneous for its intended use. ✓ The assessment by the uniform distribution assume between the
- maximum and minimum values as well as that by ANOVA was carried out.

Assessment by ANOVA				
		3.55 %		
<i>U</i> _{bb}	0.785 %			
Assessment by the uniform distribution assumed between the maximum and minimum values				
Maximum value – minimum value /√3		5.11 %		
Certified value – value farthest from the certified value / $\sqrt{3}$		5.71 %		
	Uncortainty	due to homogeneity		
	-	• •		
	$u_{\rm hom} = 5.$	71 % (relative value)		

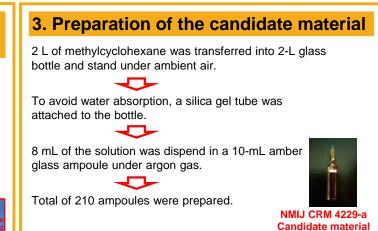
✓ The certified value of this CRM was determined by the coulometric KF titrator of which the electric charge was verified by JCSScalibrated standard resistor, voltmeter and frequency counter.

Conditions of coulometric Karl Fischer (KF) titration

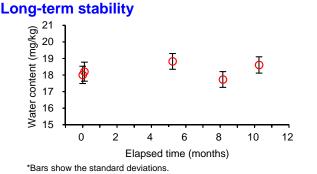
20 s

On

Slow


1.5 mL (1.1 g)

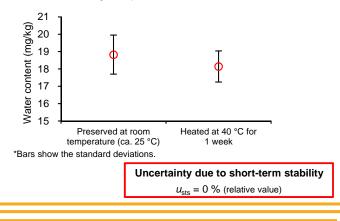
1 µg (20 mA × 0.5 s)


✓ The standard uncertainty of the certified value ($u_{\rm CRM}$) was evaluated by combining $u_{\rm anal}$, $u_{\rm hom}$, $u_{\rm lts}$, and $u_{\rm sts}$.

Comparison of the amounts of water obtained by the JCSS-calibrated coulometric titrator and

Uncertainty budget for the analytical method							
Parameter	Estimate /xi	Standard uncertainty	Sensitivity coefficient	Contribution / c <i>u</i> (<i>x</i> i)			
		/ <i>u</i> (<i>x</i> _i)	/c _i	1-1-()			
Wsample	20.83 µg	0.619 µg*	0.872 g⁻¹	0.539 µg/g			
W _{blank}	0.067 µg	0.0236 µg	-0.872 g ⁻¹	0.021 µg/g			
<i>M</i> sample	1.1475 g	0.00057 g	-15.8 µg/g²	0.0090 µg/g			
C**	18.1 µg/g			0.540 µg/g			

6. Evaluation of stability



- Uncertainty due to long-term stability was evaluated according to ISO Guide 35.
 - → The slope of the regression line shows no significant difference.
- ✓ The standard uncertainty due to long-term stability is *t*× *s*(*b*₁), where *t* and *s*(*b*₁) represent the term of validity and the standard deviation of the slope, respectively. The expiry date of this candidate material has been set as about 3 years from the beginning of the long-term stability test.

Uncertainty due to long-term stability $u_{ts} = 10.3 \%$ (relative value)

Short-term stability

- The ampoules were heated at 40 °C for 1 week, which was 10 °C higher than the upper limit of the storage temperature, and then, the change in the water content of the ampoules was evaluated.
- → Since no significant differences were observed, the candidate material would be stable during transportation.

8. Conclusions

✓ We developed a NMIJ CRM 4229-a (Water in Methodeveloped a 0.02 mg(a)) for the guartification

coulometric KF titrato

	Amount of the water obtained by the JCSS- calibrated coulometric titrator	Amount of water indicated by the coulometric KF tirrator	Deviations of the measured value between both titrators
Run 1	22.1 µg	22.6 µg	+2.09 %
Run 2	22.8 µg	23.8 µg	+4.44 %
Run 3	23.0 µg	22.8 µg Max	4-0.81 %
Run 4	23.9 µg	24.3 µg val	ue +1.77 %
Run 5	22.0 µg	21.7 µg	-1.22 %
Run 6	29.0 µg	30.3 µg	+4.32 %
Run 7	25.8 µg	26.2 µg	+1.48 %
Run 8	17.2 µg	16.6 µg	-3.52 %
$Mean \pm SD$			(+1.07 ± 0.98) %

✓ As maximum value of the absolute value of the deviation was +4.44 %, $|+4.44|/\sqrt{3} = 2.56$ % (relative value) was used as the standard uncertainty due to the electric charge applied in coulometric KF titration.

0.0298 (relative value)

*Uncertainty due to repeatability of coulometric KF titration and electric charge applied were combined.

 $*C = (W_{\text{sample}} - W_{\text{blank}})/M_{\text{sample}}$

Uncertainty due to analytical method

 $u_{\text{anal}} = 2.98 \%$ (relative value)

Uncertainty budget for the certified value

Uncertainty source	Symbol	Unit	Value	Uncertainty
Certified value	C _{CRM}	mg/kg	18.1	
Analytical method	U _{anal}	(relative value)		0.0298
Homogeneity	<i>U</i> hom	(relative value)		0.0571
Long-term stability	Ults	(relative value)		0.103
Short-term stability	U _{sts}	(relative value)		0
Combined standard uncertainty	<i>U</i> _{CRM}	(relative value)		0.121
	U CRM	mg/kg		2.20
Certified value and expanded uncertainty $(k = 2)$				

Water $(18 \pm 5) \text{ mg/kg}$

Methylcyclohexane (0.02 mg/g)) for the quantification of trace water content in liquids. The water content of the CRM was determined by coulometric KF titration as the primary method of measurements.

- The traceability of the electric charge applied on the titration was ensured to realize metrological traceability of the certified value to the SI.
- The uncertainties due to the analytical method, homogeneity, and long-term and short-term stabilities of the CRM were evaluated, and the uncertainty of the certified value was estimated by combining them.
- This CRM is particularly suitable for quality assurance and method validation for the measurement of trace water content in liquids.

Acknowledgements

The authors thank Mr. Kouji Kitanaka, Mr. Masaharu Hagiwara, and Mr. Shuichi Kotaki of Hiranuma Sangyo Co., Ltd. for their support and useful discussions.

http://www.aist.go.jp/