

THE ROBUSTNESS AND UNIVERSALITY OF TUNABLE-BARRIER ELECTRON PUMPS

S. P. Giblin¹, P. See¹, J. D. Fletcher¹, J. P. Griffiths², G. A. C. Jones², I. Farrer², D. A. Ritchie², M. –H. Bae³, Y. –H. Ahn^{3,4}, M. Seo^{3,5}, Y. Chung⁵, N. Kim³, G. Yamahata³, T. Karasawa⁶, A. Fujiwara⁶, R. Zhao⁷, A. Rossi², F. E. Hudson⁷, M. Möttönen⁸, A. Dzurak⁷, T. J. B. M. Janssen¹ and M. Kataoka¹

¹National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 OLW, United Kingdom, ²Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB30HE, United Kingdom, ³Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea, ⁴Department of Physics, Korea University, Seoul 136-713, Republic of Korea, ⁵Department of Physics, Pusan National University, Busan 609-735, Republic of Korea, ⁶NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsuqi, Kanaqawa 243-0198, Japan, ⁷School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, New South Wales 2052, Australia, ⁸QCD Labs, COMP Centre of Excellence, Department of Applied Physics, Aalto University, 00076 AALTO, Finland

A plateau can be defined with respect to a fit -in this case, a sum of two exponentials [ref. 11] with an offset δI . Alternatively, linear fits can establish a range of data where the slope is less than the fitting uncertainty

4. Universality

Does the pump mechanism work in pumps made from different materials, with different designs?

For 7 studies on optimally tuned electron pumps at NPL and PTB, we plot:

- Pump current ΔI_p
- Drive frequency f

cryostat temperature 7 Also indicated are the material used to make the pump (Si or GaAs) and whether the drive signal was a Sine Wave or from an Arbitrary Waveform Generator (AWG).

Numbers along the top of the plot refer to the reference list

7<u>8</u> 3 5 6 q 1-(mqq) 0 Measured at -1 • NPL Δ PTB -2 AWG AWG SAAC f (GHz) 1 Ω £ 1. 0.1 2012 2014 2016 2018 **Publication Date**

References:

 M. D. Blumenthal et al, Nature Physics 3, 343 (2007).
S. P. Giblin et al, New Journal of Physics 12, 073013 (2010)
S. P. Giblin et al, Nature Communications 3, 930 (2012) [4] M. -H Bae et al, Metrologia 52, 195 (2015) [5] F. Stein et al, Appl. Phys. Lett. 107, 103501 (2015)
[6] G. Yamahata et al, Appl. Phys. Lett. 109, 013101 (2016).

[7] F. Stein et al. Metrologia . S1 (2016)

[7] F. Stein et al, Metrologia, S1 (2016)
[8] S. P. Gibine tal, Metrologio 54, 299 (2017)
[9] R. Zao et al, arXiv: 1703:04795, Submitted to Physical Review Applied
[10] D. Drung et al, Review of Scientific Instruments 84, 024703 (2015)
[11] V. Kashchyevs and J. Timoshenko, Conference on Precision Electron Measurements 536 (2014)

5. Conclusions

Robustness:

We have shown robustness at the 1-2 ppm level of one design of pump to changes in 4 parameters; 3 gate voltage and the RF drive power.

Universality:

We have measured 4 different designs of pump, 2 each using GaAs and Si technology. They all have current equal to *ef* within uncertainty of 1 ppm or less when optimally tuned. Our best measurement, 0.27 ppm on a silicon pump @ 1 GHz, can be compared with the best measurement on a GaAs pump, 0.16 ppm @ 600 MHz, ref. 7.

Next:

Direct comparison of two different pumps Guidelines for electron pumps as primary realisation of ampere.

23 Department for

Business, Energy & Industrial Strategy

FUNDED BY BEIS

