The Consultative Committee for Time and Frequency

Luc Erard CCTF President

Bureau

- International des Poids et
 - Mesures

CCTF

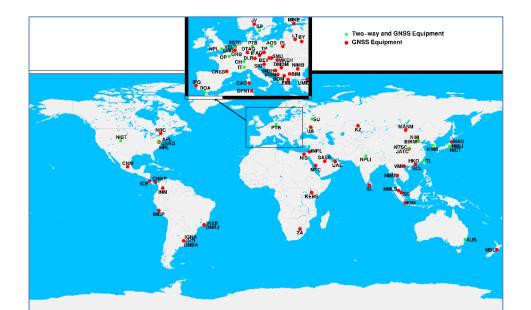
The CCTF promotes research on time scales, primary and secondary frequency standards, time and frequency transfer techniques, and their applications

The CCTF met in 2015 and 2017.

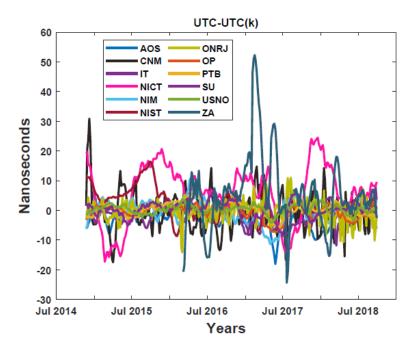
Nine Working Groups allow world-wide exchange among NMIs, stimulating collaborations, comparisons, and support to the users.

Main drivers are:

- Global forum for progressing the state-of-the art
- Facilitating dialogue between NMIs and stakeholders
- Global comparability of measurements



Global forum for progressing the state-of-the art


The CCTF coordinates the realization of the international time scale, **Coordinated Universal Time (UTC)**, computed monthly by the BIPM, leading to the key comparison **CCTF-K001.UTC**

An approximation, called rapid UTC (UTCr), has been computed weekly since 2013

UTC is based on **International Atomic Time (TAI)**, which is computed from 450 clocks maintained in 80 time laboratories

Global forum for progressing the state-of-the art

www.bipm.org

The NMIs realize a local real-time approximation of UTC, called UTC(k) kept in agreement with UTC

The NMI time labs are in continuous contact with the BIPM for data and information exchange

CIRCULAR T 369 International des + Poids et Mesures 2018 OCTOBER 10, 09h UTC

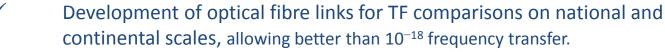
Bureau

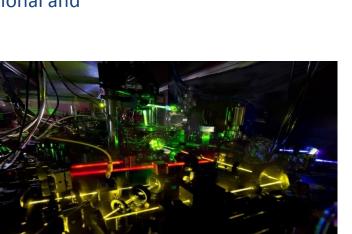
ISSN 1143-1393

BUREAU INTERNATIONAL DES POIDS ET MESURES THE INTERGOVERNMENTAL ORGANIZATION ESTABLISHED BY THE METRE CONVENTION PAVILLON DE BRETEUIL F-92312 SEVRES CEDEX TEL, +33 1 45 07 70 70 tai@bipm.org

The contents of the sections of BIPM Circular T are fully described in the document " Explanatory supplement to BIPM Circular T " available at ftp://ftp2.bipm.org/pub/tai/publication/notes/explanatory supplement v0.1.pdf

1 - Difference between UTC and its local realizations UTC(k) and corresponding uncertainties. From 2017 January 1. 0h UTC. TAI-UTC = 37 s.


Date 2018 0h UTC				AUG 29	SEP 3	SEP 8	SEP 13	SEP 18	SEP 23	SEP 28	8 Uncertainty/ns		/ns	Notes		
			1	MJD	58359	58364	58369	58374	58379	58384	58389	$u_{\rm A}$	$u_{\rm B}$	u		
Laboratory k				[<i>UTC-UTC(k</i>]]/ns												
	AOS	(Borowiec)	123	·	-2.1	-3.0	-3.0	-3.6	-4.2	-4.8	-6.1	0.4	4.1	4.1		
	APL	(Laurel)	123	-	-1.6	0.8	0.6	0.2	-0.7	0.7	1.0	0.4	11.3	11.3		
	AUS	(Sydney)	123	~	-39.5	-55.2	-49.7	-42.9	-42.0	-36.3	-47.0	0.4	6.4	6.4		
	BEV	(Wien)	123	-	-10.8	-6.4	2.0	10.1	14.6	22.1	18.6	0.4	3.3	3.3		
	BIM	(Sofiya)	123	~	-	-	-	-	-		-					
	BIRM	(Beijing)	123		13.0	12.0	10.5	10.9	10.9	12.4	15.0	0.5	3.2	3.2		
	BOM	(Skopje)	123	~	-676.6	-703.4	-728.9	-753.4	-775.5	-804.8	-821.1	1.5	8.2	8.3		
	BY	(Minsk)	123		-1.5	-1.6	-2.6	-3.1	-3.4	-1.7	-3.0	1.5	12.2	12.3		
	CAO	(Cagliari)	123	-	-6328.6	-6433.0	-6540.4	-6642.6	-6753.2	-6851.2	-6944.9	1.5	20.0	20.1		
	CH	(Bern-Wabern)	123	~	0.0	-2.1	-2.9	-3.5	-5.6	-5.7	-5.4	0.4	2.2	2.2		
	CNES	(Toulouse)	123	-	20.0	19.6	25.3	30.9	27.9	25.7	22.3	0.4	4.6	4.6		
	CNM	(Queretaro)	123	~	6.9	-2.3	3.7	0.9	1.5	-1.0	-2.2	2.5	11.3	11.5		
	CNMP	(Panama)	123	-	3.9	9.2	1.1	-3.8	-1.6	-7.6	-7.5	0.7	7.4	7.4		
	DFNT	(Tunis)	123	~	472.2	668.9	871.6	1091.4	1267.9	1480.0	1694.9	0.7	20.0	20.1		
	DLR	(Oberpfaffenhofen)	123	-	-	-	-	-	-	-	-					
	DMDM	(Belgrade)	123	-	-53.5	-39.6	-24.1	-10.2	8.7	20.6	17.9	0.4	3.3	3.3		
	DTAG	(Frankfurt/M)	123	~	-95.5	-105.6	-103.2	-103.6	-97.0	-107.6	-110.3	0.4	3.0	3.0	(1)	
	EIM	(Thessaloniki)	123	-	9.1	2.5	1.0	6.7	1.1	6.3	2.9	3.0	11.3	11.7		
	ESTC	(Noordwijk)	123	2	-1.2	0.9	1.3	0.8	0.4	0.1	-1.0	0.4	3.2	3.2		


Recent achievements at the NMIs

New primary and secondary standards reported for use in UTC

(Seven Cs and one Rb fountain frequency standards, two Sr optical standards).

- Research on optical transitions, development of very accurate clocks with 10⁻¹⁸
 intrinsic accuracy
 (Sr, Yb, Ca, Hg⁺, Al⁺, ...).
- Continuous improvement of time and frequency comparison by satellite links: Two Way Satellite Time and Frequency Transfer and by Global Navigation Satellite Systems.

Sr Clock (Photo: LNE - SYRTE)

Yb Lattice Clock (Photo: NIST)

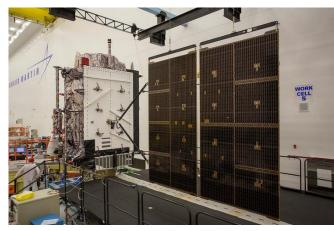
Facilitating dialogue between NMIs and stakeholders

Time and Frequency metrology shares mutual benefits with different liaison communities

Earth and space sciences need precise timing for observation, research and modelling in the fields of geodesy, geophysics and astronomy – for example tectonic movements and space probe navigation

Astronomy and geodesy provide precise data for timekeeping

Relativistic geodesy measures gravity potential with atomic clocks



Facilitating dialogue between NMIs and stakeholders

- Global Navigation Satellite Systems (GNSS) are based on precise timing
- GNSS offer positioning services and Dissemination of UTC

GPS III SV02 Array Deployment Test (Photo: Lockheed Martin)

www.bipm.org

Galileo quartet placed atop an Ariane 5 (Photo: ESA/CNES)

NMIs and Time labs are involved in global or regional satellite navigation systems by supporting their timing systems The BIPM supports the International Committee on GNSS of the United Nations

Facilitating dialogue between NMIs and stakeholders

- Several industrial applications are based on precise timing; the BIPM and NMIs work in close cooperation
- Telecommunications are based on network synchronization. Telecommunication techniques allow dissemination of time and frequency signals. The BIPM works in close cooperation with the International Telecommunication Union.
- UTC is the reference for **financial market** coordination (the recent EU MiFID II regulation) and **cross-border energy transmission.**

Traffic applications such as train synchronization, road transportation, bus and taxi fleet control.

Civil time keeping and legal times are based on UTC.

Global comparability of measurements

The CCTF coordinates the strategies for time and frequency **comparisons** and **dissemination** with NMIs and relevant international and regional organizations.

- 1174 CMCs in 19 service categories
- 1 KC CCTF- K001.UTC, 1 Supplementary Comparison (GULFMET.TF-S1)

www.bipm.org

Future challenges

- ✓ Moving towards a new definition of the second, achieving 10⁻¹⁸ accuracy. poster
- Improving UTC in terms of stability (low 10⁻¹⁶), accuracy (few ns), and accessibility (new interactive web page).
 poster
- Promoting the important benefits of the unique reference time UTC to the international scientific and industrial communities.

Luc.Erard@lne.fr

Control Contro

Bureau

- International des
 - Poids et
 - Mesures

www.bipm.org