

International Commission on Illumination Commission Internationale de l'Eclairage Internationale Beleuchtungskommission

Measurement Challenges for Efficient Sustainable Lighting Technologies

Yoshi Ohno

President, International Commission on Illumination (CIE) (National Institute of Standards and Technology, USA)

Other Delegates from CIE:

Kathryn Nield, General Secretary of CIE Peter Blattner, President-Elect, Director of CIE Division 2 Tony Bergen, Secretary of CIE Division 2

OUTLINE

Overview of CIE

- Solid State Lighting and measurement challenges
- Challenges in other aspects of SSL
- CIE's work for future photometry

Cie Overview of CIE

- Established in 1913
- International scientific body in the area of light and lighting, with ~1500 experts (scientists, standardization officers, lighting engineers, lighting designers, ...)
- International standardizing body in the area of light and lighting, recognized by ISO, IEC, and CIPM
- Participation from NMIs, test and measurement laboratories, universities, research institutes, industry,...
- 37 National Committees and 3 associate National Committees covering all continents
- ~ 120 Technical Committees
- More than 30 publications (technical reports, standards, technical notes) during the past 4 years

Structure of CIE

CIE Overview of CIE Board of Administration 2015 – 2019

Officers

President	Dr	Yoshi Ohno (US)		DIVISI
President-Elect Dr Pet		Peter Blattner (CH)		Div 1
VP Technical	Dr	Erkki Ikonnen (FI)		Div 2
VP Publications	Pro	of. Ronier Luo (GB)		Div 3
VP Standards	Ad	de Visser (NL)		Div 4
VP	Dr	Grega Bizjak (SI)		Div 6
VP	Pro	of. Yiping Cui (CN)		Div 8
VP	Pro	of. Y. Nakamura (JP)		
VP	Dr L. Whitehead (CA)			
Secretary	Teresa Goodman (GB)			
Treasurer	Ric	chard Distl (DE)		
General Secreta	ary	Kathryn Nield (Centra	al E	Bureau)

Division Directors

- Div 1 Dr Youngshin Kwak (KR)
- Div 2 Dr Peter Blattner (CH)
- Div 3 Dr Jennifer Veitch (CA)
- Div 4 Dr Dionyz Gasparovsky (SK)
- Div 6 Dr John O'Hagan (GB)

Div 8 Po-Chieh Hung (JP)

MoU between CIE and CIPM

AGREEMENT BETWEEN THE INTERNATIONAL COMMISSION ON ILLUMINATION **AND THE** INTERNATIONAL COMMITTEE FOR WEIGHTS AND MEASURES 2007

Director of the International Bureau of Weights and Measures for the Committee

President of the of the International Commission on Illumination for the Commission

Date: 2 April 2007

Andrew Walland

Date: 2 April 2007

• Liaison from CIE to CCPR: Division 2 Director (P. Blattner)

- Liaison from CCPR to CIE: Y. Ohno
- CIPM is responsible for the units
- CIE is responsible for defining action **spectra** (including spectral luminous efficiency functions)
- Consult together on issues of quantities and units and metrology for optical radiation

CIF is also an **observer in CCU** (K. Nield, P. Blattner)

OUTLINE

Overview of CIE

Solid State Lighting and measurement challenges

- Challenges in measuring other aspects of SSL
- CIE's work for future photometry

Cie Light-Emitting Diodes (LED)

History of LED

1907 Electroluminescence (from SiC) was discovered by H. J. Round (UK).

1955 - 1961 Infrared LEDs developed

1962 Red LED invented by Nick Holonyak (USA)

1962 Yellow LED invented by George Craford (USA)

1994 Blue LED (InGaN) invented byS. Nakamura, H. Amano, and I.Akasaki (Japan).White LED

possible

26th CGPM, Nov. 2018, Versailles

2014 Nobel Prize

George Craford)

Cie Solid State Lighting (LED Lighting)

Lighting consumes ~20 % of electricity ~8 % of total energy

(statistics of USA)

Improvement of luminous efficacy of LED lighting products by 1 % will save electrical energy of value 4 billion Euro /year globally.

White LED Im/W improvements

http://www.energy.gov/sites/prod/files/2015/02/f19/craford innovation sanfrancisco2015.pdf

Needs for international harmonization of test methods and accreditation

26th CGPM, Nov. 2018, Versailles

CIE

Cie Future Goal toward free trade and commerce for SSL products

CIE S 025:2015

International Commission on Illumination Commission Internationale de l'Eclairage Internationale Beleuchtungskommission

Draft International Standard

Test Method for LED Lamps, LED Luminaires and LED Modules

	-	4	-
N	n	•	F
	~		-

This document has been approved by the CIE Board of Administration and Division 2 and has been circulated to the CIE National Committees for comments. It may not be referred to as a CIE International Standard until accepted by the CIE National Committees.

CIE International Standards and CIE Draft International Standards are copyrighted and shall not be reproduced in any form, entirely or partly, without the explicit agreement of the CIE.

Descriptor:

CIE Central Bureau, Vienna Babenbergerstrasse 9, A-1010 Vienna, Austria

CIE DIS 025/E:2014

CIE DIS 025/E:2014

UDC: 535.24 535.241.5 Photometry Quantities related to photometric and other measurements

- International test method for LED lamps, LED luminaires, and LED modules
- Developed by TC 2-71 (Ohno chair) with 40 members from 20 countries. Took 4 years.
- Intended for use in SSL regulations and for testing laboratory accreditation.
- Joint work with CEN TC169 WG7, that produced a harmonized std:

EN 13032-4 Lighting Applications — Measurement and presentation of photometric data of lamps and luminaires — Part 4: LED lamps, modules and luminaires

• Test method for European region.

CIE Tutorial and Practical Workshop on LED Lamp and Luminaire Testing to CIE S 025

- (1) PTB, Germany, Nov. 2015
- (2) METAS, Switzerland, May 8-11, 2017
- (3) VNISI, Moscow, Russia, Nov. 5-7, 2018

CIE Tutorial and Expert Symposium on Measurement Uncertainties in Photometry and Radiometry for Industry, Vienna, Austria, Sep. 2014

Cle

Measurement challenges for LEDs, LED lamps and LED luminaires

- Variety of products (components to lamps, luminaires)
- Sensitive to temperature (ambient temperature, air movement)
- Large drift of output (~20 %) during stabilization
- Dissimilar spectral distributions
- Sensitive to AC power supply characteristics

 (impedance, harmonic distortion, power meter error)
- There are many quantities (total luminous flux, luminous efficacy, luminous intensity distribution, active power, colour quantities ... in regulations)
- **Uncertainty evaluation** is difficult for many industry laboratories (particularly for color quantities).

Worldwide Interlaboratory Comparison of Measurements of LED lamps (110 Labs)

(IEA 4E SSL Annex, IC 2013)

Ref. IC 2013 Final Report at http://ssl.iea-4e.org

CIE Worldwide Interlaboratory Comparison of Measurements of LED lamps (110 Labs)

(IEA 4E SSL Annex, IC 2013)

Ref. IC 2013 Final Report at http://ssl.iea-4e.org

26th CGPM, Nov. 2018, Versailles

18

Other Recent Publications on LED measurement

CIE 226:2017 Optical Measurement

of High-Power LEDs

Measure LEDs at a given junction temperature.

CIE 227:2017 High Speed Testing Methods for LEDs

CIE S 025 SP-1 <approval stage> Test Methods for OLED luminaires and OLED light sources

Int Co Int	ISBN 878-3-902842-12-1 DOI: 10.26038/TR.226.2017
•	TECHNICAL REPORT
н	Optical Measurement of High-Power LEDs
	CIE 226-2017 UDC: 535.24 535.243 Descriptor: Photometry Colorimetry Spectrophotometry 535.243 Descriptor: Photometry Spectrophotometry

OUTLINE

- Overview of CIE
- Solid State Lighting and measurement challenges
- Challenges in other aspects of SSL
 CIE's work for future photometry

Cie Colour Quality of LED Lighting Sources

Wavelength (nm)

- Variety of Spectra
- New color quality design products

- Existing standard CIE Color Rendering Index does not meet the needs for SSL.
- CIE published a new metric: CIE 2017
 Colour Fidelity Index (CIE 224:2017)

• Work in progress for further metrics.

26th CGPM, Nov. 2018, Versailles

TECHNICAL REPORT

CIE 2017 Colour Fidelity Index for accurate scientific use

CIE 224:2017 UDC: 159.937.51 535.67 612.843.31 535.66

Non-visual effects of light

Human visual system

5 Photoreceptors

- Cones (L, M, S)
- Rod (scotopic)
- ipRGC

(Intrinsically-Photosensitive Retinal Ganglion Cells)

Action spectrum for melatonin suppression

Vision (image, colour)

Non-visual effects

- sleep-wake (circadian) regulation
- alertness / comfort
- eye fatigue

"Healthful Lighting"

- What light is best for night (for good sleep)?
- What light is best for office work (productivity)?
- How much light is needed for healthful life?

26th CGPM, Nov. 2018, Versailles

Metrology for Non-visual effects of light

CIE Draft International Standard DIS 026: 2018 CIE System for Metrology of Optical Radiation for ipRGC-Influenced Responses to Light

 Defines action spectra for ipRGC and other 4 photoreceptors, L,M,S-cones, and Rod.

Defines quantities measured with these action spectra using SI units:

Response	Index α	Photoreceptor	Photopigment	lpha-opic action spectrum, $s_{lpha}(\lambda)$
S-cone-opic	sc	Short-wavelength cones	S-cone photopsin (cyanolabe)	$s_{\rm sc}(\lambda)$
M-cone-opic	mc	Medium- wavelength cones	M-cone photopsin (chlorolabe)	$s_{\rm mc}(\lambda)$
L-cone-opic	lc	Long-wavelength cones	L-cone photopsin (erythrolabe)	$s_{\rm lc}(\lambda)$
Rhodopic	rh	Rods	Rhodopsin	$s_{\rm rh}(\lambda)$
Melanopic	mel	ipRGCs	Melanopsin	$s_{\rm mel}(\lambda)$

e.g., melanopic irradiance $E_{\rm e.mel}$ = 65.7 mW/m²

OUTLINE

Overview of CIE

- Solid State Lighting and measurement challenges
- Challenges in measuring many other aspects of SSL
- CIE's work for future photometry

CIE's Work for Future Photometry

"CIE standard Illuminant for LED"

CIE's Work for Future Photometry "CIE Illuminant L"

Revision of

"Principles Governing Photometry" (BIPM, 1983), and "Basis of Physical Photometry" (CIE 18.2-1983) (in approval stage) developed by CIE-CCPR Joint TC (JTC-2)

Spectral Luminous Efficiency Function

Summary

- The revolution in lighting is on-going for huge energy savings globally. CIE supports SSL in metrology and scientific aspects.
- There are many other issues (flicker, glare, blue light hazard, connected lighting ..). Further **new standards** are needed for the evolving SSL.
- CIE has close cooperation with ISO, IEC, CCPR, IEA and many other organizations. We welcome new countries and other organizations to work together.

THANK YOU

Contact: ohno@nist.gov